VISUALIZATION-BASED
NEURAL NETWORK INTROSPECTION

ALEX BAUERLE

VISUALIZATION-BASED
NEURAL NETWORK INTROSPECTION

ALEX BAUERLE
FROM FRIEDRICHSHAFEN

A cumulative thesis submitted to attain the degree of Dr. rer. nat.
of the Faculty of Engineering, Computer Sciences and Psychology
at Ulm University

July, 2022

Alex Bauerle: Visualization-based

Neural Network Introspection © July, 2022

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/4.0/.
Typeset: PDF-IXTEX 2¢

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Acting Dean:
Prof. Dr. Anke Huckauf

Referees:
Prof. Dr. Timo Ropinski
Prof. Dr. Martin Wattenberg

Date of Defense:
December 21, 2022

ABSTRACT

Artificial intelligence (AI) and the use of neural networks have become
omnipresent in recent years. Neural networks model complex math-
ematical functions that can be based on billions, or even trillions, of
parameters. At the same time, neural networks make decisions that
can deeply impact our lives. Therefore, understanding, testing, and
interpreting these networks and their decisions is an integral part of
model development and deployment. While there exist introspection
techniques that support such understanding, testing, and interpreta-
tion, their adoption for diagnosing systems and explaining decisions
can be difficult. Current problems with the adoption of introspection
techniques are that they are not easily implemented in one’s frame-
work, do not work well in combination to create more meaningful
analyses, and are difficult to interpret.

Through the integration of existing and novel introspection tech-
niques into visualization interfaces, extensive analysis, actionable
insights, and effective diagnosis are made widely available. These
visualization interfaces can be incorporated into existing development
workflows and are designed to support bespoke analysis needs, which
makes the interpretation of findings easier. In this thesis, we present
published visualization interfaces in three different areas, namely qual-
ity assurance, communication, and Al education. These publications
include a visualization approach for correcting mislabeled training
data, an interface for automatic network figure generation to com-
municate network architectures, and an educational environment for
recurrent neural networks (RNNs). Finally, to unify the diverse land-
scape of Al visualization interfaces, we also present a framework for
composing, reusing, exploring, and sharing such interactive machine
learning (ML) interfaces.

vii

Working on this thesis was a learning endeavor, both scientifically and
personally. I want to express my gratitude to everyone who supported
me throughout this time, especially:

My supervisor, Timo, for believing in me when I had no clue about a
field of research that I now think about every day and allowing me to
work on what I found most interesting once I was ready for it.

All the MI-colleagues who were always supportive during work times
and became great friends outside of work.

My colleagues and mentors from my internships at Google and Apple.
These times were the most demanding, but also the most exciting and
formative phases of my PhD.

All my friends who were there when I needed a break from work.
Without you, I don’t believe I could have completed this task while
staying sane.

Most importantly, my parents, Paul and Sigi, for making sure I had
every opportunity and giving me the freedom to do what interested
me the most, as well as my brother Kai and my partner Alina, who
were incredibly supportive.

ix

CONTENTS

II

Thesis
Introduction 3
1.1 Introspection Technniques 3
1.2 ML Visualization Interfaces 5
1.2.1 Quality Assurance 5
1.2.2 Communication 7
1.23 Education00 L. 7
1.2.4 Unification. 9
1.3 Structure of thisWork 9
1.4 Publications included in thisWork 10
1.5 Other Publications 10
Contributions 13
2.1 Classifier-Guided Visual Error Correction 14
22 Net2Viso o 18
23 exploRNN 23
24 Symphony 27
Conclusion 31
3.1 FutureWorko L 31
3.2 Summary of Contributions 33
Bibliography 35
Publications

Xi

Part1

THESIS

INTRODUCTION

ML systems, especially deep learning (DL) algorithms, are becoming
omnipresent and nowadays influence many parts of our everyday
lives. DL has already been integrated into various domains such as
navigation [Chi+19; Wor+19; RC21], recommender systems [PAC18S;
Rag20], medicine [RDK19; WLW20], and many more [JM15]. How-
ever, as is often the case, with great power comes great responsibility,
and ML systems have been shown to be discriminative, error-prone,
and unreliable [BG18; Sno18; AH+18; SC18; WHM19; Obe+19]. As a
result, practitioners [DVK17; JIV1g; DJL21; Sav22] as well as policy-
makers [OEC19; AIEC20] call for explanations and control provided
through ML introspection techniques.

1.1 INTROSPECTION TECHNNIQUES

To facilitate the need for analysis tools, myriad introspection tech-
niques to investigate DL models or data sets have been proposed
by the research community [MCB20o; MV20]. In this work, we use
introspection techniques as an umbrella term for explainability tech-
niques and other approaches designed to foster an understanding of
the problems, limitations, and capabilities of ML models or data sets,
e.g., data set analysis methods or model architecture descriptions. As
such, introspection techniques can be loosely defined as tools that help
human observers understand elements of an otherwise opaque DL
pipeline.

Before going into what introspection techniques are used for, we first
need to define what the term introspection techniques does encompass
and, perhaps more importantly, what it does not include. The terms
interpretability and explainability are often used interchangeably in
the context of DL. Multiple definitions for both terms can be found
online and in research papers. In this work, we adopt the definition
of Rudin [Rud19], who defines interpretable models as those that are
inherently interpretable, whereas explainability only includes post-
hoc explanation methods for black-box models. Thus, interpretability
generally describes models that can be interpreted without auxiliary
explanation, whereas black-box models require introspection tech-
niques to be understood. As such, we do not consider interpretable
models in this thesis but focus instead on the introspection techniques
and visualization interfaces needed to facilitate explainability.

One of the most well-known explainability techniques is attribu-
tion, where activations of neural network units are attributed to input

INTRODUCTION

features. Attribution methods can be either perturbation-based, e.g.,
[ZF14; FV17], or backpropagation-based, e.g., [ZTF11; STY17]. An-
other well-researched explainability technique is feature visualization,
where the activation of a neuron is maximized by changing the input
image, often through gradient descent [Erh+o9]. Feature visualization
can be used to reason about the features that individual neurons or
combinations of neurons, such as channels or layers inside a neural
network, have learned. There are also several data-based explainability
methods, the most prominent of which might be counterfactual ex-
planations [WMR17]. For a more complete overview of explainability
methods for DL, the field guide published by Ras and Xie et al. serves
as a good starting point [Ras+22]. In our work, we use explainability
techniques as a technical foundation of the presented visualization
interfaces.

In addition to explainability, our definition of introspection also
includes the numerous tools that are not targeted directly at explain-
ing the decisions of ML models or what they have learned. The most
common techniques here might be analysis techniques related to
training data sets. In this context, labeling approaches might be eval-
uated [KSA11; Lea11], or training data set fairness tested [Aka+21].
Another example for introspection techniques aside from explainabil-
ity is documentation methods [Arn+19; BF18]. The most prominent
of these documentation methods is Datasheets for Datasets [Geb+21].
In this work, Gebru et al. apply the idea of datasheets in electri-
cal engineering to the domain of DL. Their Datasheets for Datasets
describe important attributes of a data set, e.g., overview statistics,
collection methods, and intended uses. A similar approach but for
model reporting has been proposed by Mitchell et al. [Mit+19]. Similar
to explainability, such introspection techniques are used in our work
as a technical foundation for visualization interfaces.

Now that the scope of introspection methods has been clarified,
we also need to specify the rationale behind the development of in-
trospection techniques. In their review, Marcinkevics et al. list trust,
causality, reliability /robustness/transferability, fairness, and privacy
as potential goals of explainability methods [MV20]. Additionally, we
have seen that documentation methods can be important for reusabil-
ity [Mit+19; Geb+21]. This list describes some of the most common
objectives of introspection techniques but does not claim to be exhaus-
tive. Furthermore, these objectives typically vary depending on the
application area and target users of introspection techniques [Hoh+18].
As such, introspection techniques can be, e.g., roughly assigned to the
spectrum between developer-focus and end-user-focus [Ras+22].

As mentioned before, we use introspection techniques as a techni-
cal foundation for our work. To this end, our work also includes
novel introspection approaches. In this thesis, we mainly focus on data

1.2 ML VISUALIZATION INTERFACES

collectors, developers, researchers, and decision-makers in the ML
pipeline, but not end-users as our target audience. More importantly,
our work is focused on how introspection techniques can be made
more accessible through visualization. The following section explains
the role of visualization interfaces in the context of DL introspection
and provides an overview of the work in this area.

1.2 ML VISUALIZATION INTERFACES

While the necessity of introspection techniques for analyzing ML mod-
els and data sets is apparent [DVK17; Sav22], their existence alone is
not sufficient. Introspection techniques need to be understandable for
their target audience and usable in their specific problem context. If
not designed and presented adequately, introspection techniques can
fail their users [For+20] or even have adverse effects [Rud19; Sto+22].
We have found that, despite their existence, many introspection tech-
niques are rarely used and shared between collaborators working on
ML systems, as it can be hard to integrate them into their workflow
and problem context [Bau+22c].

One way to counteract this lack of broad adoption of introspection
techniques is to improve their presentation, usability, and integrata-
bility [Wan+22]. Visualization is one way to achieve better usabil-
ity and understandability of introspection methods [Yan+20; Str+21;
Mes+22]. Data visualization transforms abstract data into meaningful
representations, thus fostering knowledge communication and dis-
covery [Hoh+18]. Although visualization research is relatively new
to the domain of ML, it has already had a remarkable impact on the
domain. In their interrogative survey, Hohman et al. refer to the short
yet impactful history of visual analytics in the domain of ML [Hoh+18]
while providing an overview of the visualization work in the domain
of DL.

Despite not being the first to apply visualization to DL, Zeiler and
Fergus [ZF14] are often considered to have popularized the use of
visualization for neural network introspection. They presented an
approach to project learned features back to input images through
deconvolution. Since then, countless papers at the intersection of
visualization and DL have been published. In the following, we will
discuss recent publications in the three areas that our contributions
can be attributed to, namely quality assurance, communication, and
education.

1.2.1 Quality Assurance

When the predictions that DL systems make have a large impact
on our lives, it is just natural that practitioners, affected end users,
and independent organizations ask for quality guarantees [Ham+20;

INTRODUCTION

AIEC20]. To investigate the quality of DL systems, visualizations that
support human overview are often employed [Mes+22].

Those focusing on neural network prediction quality assurance
are amongst the most popular of such visualization interfaces. With
Boxer, model predictions can be interactively compared [Gle+20]. This
comparison supports model diagnosis and selection. Combining this
comparative visualization approach with set algebra further enables
subgroup analysis. There even exists a testing framework, Vatun, for
CNNis [Par+21]. Those tests can reveal differences between models and
surface reasons for neural network predictions. Similarly, the what-if
tool [Wex+20] and the language interpretability tool [Ten+20] enable
probing into an ML model through what-if-based analysis.

There are also visualization interfaces for the detection and mitiga-
tion of the fairness issues that many ML models have. With FairVis,
predictions for intersectional subgroups can be compared as a means
to evaluate model fairness [Cab+19]. In a later publication, Wang
et al. introduce DistriLens [Wan+20]. They propose improved means
by which subsets of data that are worth investigating can be found.
During the time of working on this thesis, we have also worked on
a visualization interface for bias detection [Bau+22a]. In our work,
which is not included as one of the main contributions of this thesis,
fairness for large label spaces can be visually investigated. As bias
detection can be a labor-intensive process, modern approaches also
use crowdsourcing to reliably discover and scale the bias detection pro-
cess [Cab+21]. In this approach by Cabrera et al., systematic failures
can subsequently be discovered and analyzed using a visualization
interface.

Aside from model analysis and bias detection, ML data can also
be analyzed and improved. To this end, Dataset Cartography helps
diagnose data sets throughout the training process [Swa+20]. Here,
samples within the data set are tracked so that one can resolve which
of these samples are hard to learn for the model. Other visualizations
that are focused on data iteration help track how a data set evolves over
the course of the development process [Hoh+20]. To correct mislabeled
data, Xiang et al. use trusted data samples to guide users to potentially
mislabeled data [Xia+19]. Many visualization interfaces help resolve
labeling errors that are introduced by less experienced crowd workers.
Liu et al. designed such a visualization interface by incorporating
expert validation to improve crowdsourced image labels [Liu+18].
Similar approaches have been proposed for domains other than image
classification, such as for object detection [Che+21], often using an
iterative process for data correction.

In this thesis, we also present an approach to correct mislabeled
training data for image classifiers. Our work introduces an introspec-
tion technique that is based on using the classifier to guide practition-
ers to potentially mislabeled data samples [BNR20]. Additionally, this

1.2 ML VISUALIZATION INTERFACES

work includes a visualization interface that facilitates the adoption
and usage of this introspection technique.

1.2.2 Communication

While quality assurance has seen more attention from the research
community, visualization can also be employed for communicating
DL introspection. Such communication methods can create a broader
adoption of DL models or data sets and foster a shared understanding
of the involved concepts.

One line of research for communicating findings about ML sys-
tems are ML documentation visualizations. In this area, Holland et al.
[HHN20] proposed the concept of Dataset Nutrition Labels. Dataset
Nutrition Labels are modular graphics describing different aspects of
a data set. These labels can be seen as a more visualization-focused ap-
proach to the previously mentioned Datasheets for Datasets [Geb+21].
Know Your Data takes this approach of broadly sharing insights
about data sets one step further and displays data distributions and
introspection results for many ML data sets in an interactive web-
dashboard [Inc21a].

Other communication approaches are aimed at conveying model
architectures. Many DL frameworks even have such model archi-
tecture visualization techniques directly built in, such as Tensor-
Board [Won+17], Caffe [Jia+14], and Keras [Cho+15]. However, these
detailed visualizations are designed for debugging purposes rather
than for broad communication. In contrast, visualization interfaces
that are designed to help create abstract publication figures, such
as drawconvnet [Din18] and convnetdrawer [Uch19], can be used to
generate publication figures and, in turn, broadly communicate neural
network architectures. Similarly, NN-SVG can also be used to generate
publication-tailored neural network visualizations [Len18].

This thesis includes Net2Vis, a visualization interface that can be
used to generate publication-tailored CNN architecture visualiza-
tions [BOR21]. These visualizations can be created automatically from
the modeling code, employing a unified design grammar and reducing
the time needed to create such visualizations. In contrast to the afore-
mentioned related projects, Net2Vis supports creating visualizations
for modern, large CNN architectures.

1.2.3 Education

With the growing power of DL comes an increased popularity of DL
techniques. As such, many students, as well as practitioners from
other research or product fields, are eager to learn about DL tech-
niques. Catering to this need, modern explorable explanations have
been developed. Such explorable explanations are interactive inter-

INTRODUCTION

faces that communicate learning material, often through visualization
in combination with text. For fields other than DL, such explorable
explanations have existed for a long time, preceding the DL era. Hund-
hausen et al. investigated the effectiveness of such general explorable
explanations [HDSo2; HBo7].

The work most closely related to DL education is focused on pro-
gramming education. In this area of work, Guo proposed an online
Python tutor [Guo13]. Building on their earlier work, Guo et al. sub-
sequently proposed Codechella, where pair programming for educa-
tional purposes is supported through an online visualization inter-
face [GWZ15]. Ynnerman et al. later proposed to summarize these
ideas under the term exploranation, which covers explorable explana-
tions for educational purposes [YLT18].

In the domain of DL, these explanations shed light on the properties
of DL models or data sets, their functionality, or their application
domain. Harley proposed a visualization interface where users can
experiment with their own inputs to a neural network model [Har15].
While it is not yet possible in their approach to train a model, visualiz-
ing how it processes data educates learners about the model’s internals,
nonetheless. To explain how adversarial examples deceive DL systems,
Norton and Qi propose the Adversarial Playground [NQ17].

In RevaCNN, Chung et al. focus more on exploring the activa-
tions of a neural network rather than explaining the training proce-
dure [Chu+16]. While a model can be trained in their approach, their
main visualization is focused on the network’s activation space. The
most well-known example of conveying the training process of a neural
network might be Tensorflow Playground. In Tensorflow Playground, a
simple neural network can be trained in the browser [Smi+17]. GanLab
provides a similar in-browser training experience with explanations for
generative adversarial networks [Kah+18b]. However, GanLab targets
a different, more complex type of neural network, namely genera-
tive adversarial networks. Both Tensorflow Playground and GanLab
include simple data representations, animated data transformations,
and explanatory text to support learners.

In contrast to these technical explanations, ValueCards educate
students about the social impacts of ML systems [She+21]. Targeting
Al-novices, Shen et al. tested their ValueCards on college students,
which improved the students” understanding of different Al concepts.

In this thesis, we present an interactive visual education environ-
ment for a different type of neural network, namely recurrent neural
networks [Bau+22b]. Additionally, we are the first to quantitatively
evaluate the effectiveness of such a web-based DL educational envi-
ronment.

1.3 STRUCTURE OF THIS WORK

1.2.4 Unification

Similar to the aforementioned research publications, we also use vi-
sualization techniques to make neural network introspection more
usable, understandable, and applicable. To support these needs, we
developed both introspection techniques and visualization interfaces
as part of the work included in this thesis. The visualization interfaces
presented in this work can be categorized by their target usage of
quality assurance, communication, or education, as outlined above.

While visualization interfaces that integrate introspection techniques
bring great benefits in these areas of Al explainability, “scholars from
different disciplines focus on different objectives and fairly independent topics
of Explainable Al research” [MZR21]. In turn, visualization interfaces
can often not be shared between different practitioners, reused across
domains, or combined into more powerful explainability tooling. To
address this issue of non-unified visualization interfaces, frameworks
for the composition of interfaces, such as ipywidgets [Jup21] and
Streamlit [Inc21b], can be used. However, these frameworks lack the
flexibility that many practitioners require in order to create bespoke
visualization interfaces that address their analysis needs [Koe+19;
Zha+20]. To this end, Marcelle presents one possible architecture
for composing such ML interfaces [FCS21]. Similar to Marcelle, we
present Symphony, which can also be used for the composition of
interactive ML interfaces [Bau+22c]. However, Symphony not only
lets practitioners compose multiple interfaces but also makes them
available across platforms, including reactive interaction techniques.

1.3 STRUCTURE OF THIS WORK

We just described how introspection techniques that are made ac-
cessible through visualization are needed in ML to ensure quality,
communicate findings, and educate learners. To support this need, we
set our research agenda for this dissertation as follows:

Develop methods for ML introspection
and make them accessible through visualization.

Our work is detailed in Chapter 2 in the form of four individual
research paper contributions. This includes both novel introspection
techniques as well as visualization interfaces designed to make these
tools accessible to the respective target audience. Whereas introspec-
tion techniques can be used to gain insights into an ML model or
data set, visualization interfaces can communicate these insights and
make them actionable. We begin Chapter 2 with a visualization inter-
face that has been designed to support the correction of mislabeled
training data with the help of the trained classifier itself. Next, we

10

INTRODUCTION

describe a visualization approach that fosters research communication
through an interactive, code-based generation of publication-tailored
CNN architecture visualizations. Third, we present a visual and in-
teractive learning environment for RNNs, which we compared to
classical learning environments in a quantitative evaluation. To bring
these diverse visualization interfaces for neural network introspection
closer together, we have worked on a framework called Symphony.
Symphony can be used to compose visualization interfaces in different
environments and share them with the various stakeholders working
on separate aspects of the ML pipeline.

Finally, Chapter 3 concludes this thesis. In this conclusion, we briefly
summarize our contributions and explore directions in which further
improvements could bring great benefits.

1.4 PUBLICATIONS INCLUDED IN THIS WORK

This thesis is a cumulation of previous publications that are listed here
in order of their appearance in the thesis.

[BNR20] Alex Bauerle, Heiko Neumann, and Timo Ropinski. “Cla-
ssifier-Guided Visual Correction of Noisy Labels for Im-
age Classification Tasks.” In: Computer Graphics Forum
39.3 (2020), pp. 195—205.

[BOR21] Alex Bduerle, Christian van Onzenoodt, and Timo Ropin-
ski. “Net2Vis—A Visual Grammar for Automatically Gen-
erating Publication-Tailored CNN Architecture Visualiza-
tions.” In: IEEE Transactions on Visualization and Computer
Graphics 27.6 (2021), pp. 2980-2991.

[Bau+22a] Alex Bduerle, Patrick Albus, Raphael Stork, Tina Seufert,
and Timo Ropinski. “exploRNN: Understanding Recur-
rent Neural Networks through Visual Exploration.” In:
The Visual Computer (2022).

[Bau+22b] Alex Biuerle?, Angel Alexander Cabrera®, Fred Hohman,
Megan Maher, David Koski, Xavier Suau, Titus Barik, and
Dominik Moritz. “Symphony: Composing Interactive In-
terfaces for Machine Learning.” In: Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems

(2022), pp. 1-14.
1.5 OTHER PUBLICATIONS
During the work on this thesis, several other research papers were

published. While these publications are not described in detail in this
dissertation, they also influenced this thesis:

1 Shared first co-authorship

1.5 OTHER PUBLICATIONS 11

[BJR22] Alex Bduerle®, Daniel Jénsson®, and Timo Ropinski. “Neu-
ral Activation Patterns (NAPs): Visual Explainability of
Learned Concepts.” In: (2022). arXiv: 2206.10611 [cs.AI].

[Bau+22a] Alex Biuerle®, Christian van Onzenoodt', Simon Der
Kinderen, Jimmy Johansson Westberg, Daniel Jonsson,
and Timo Ropinski. “Where did my Lines go? Visualiz-
ing Missing Data in Parallel Coordinates.” In: Computer
Graphics Forum (2022).

[Bau+22b] Alex Bauerle, Aybuke Gul Turker, Ken Burke, Osman
Aka, Timo Ropinski, Christina Greer, and Mani Varadara-
jan. “Visual Identification of Problematic Bias in Large
Label Spaces.” In: (2022). arXiv: 2201.06386 [cs.AI].

[BW20] Alex Bauerle and James Wexler. “What does BERT dream
of?” In: VISxAI 2020 (2020).

[Aka+21] Osman Aka, Ken Burke, Alex Bauerle, Christina Greer,
and Margaret Mitchell. “Measuring model biases in the
absence of ground truth.” In: Proceedings of the 2021 AAAI
/ACM Conference on Al, Ethics, and Society. 2021, pp. 327—

335-

[Web+20] Matthias Weber, Alex Bauerle, Matthias Schmidt, Matthias
Neumann, Marcus Faendrich, Timo Ropinski, and Volker
Schmidt. “Automatic identification of crossovers in cryo-
EM images of murine amyloid protein A fibrils with
machine learning.” In: Journal of Microscopy 277.1 (2020),
pp. 12—22.

1 Shared first co-authorship

https://arxiv.org/abs/2206.10611
https://arxiv.org/abs/2201.06386

CONTRIBUTIONS

Following our mission to develop methods for ML introspection
and make them accessible through visualization, we published sev-
eral visualization interfaces. Some of these publications include novel
introspection techniques that build the foundation of these visualiza-
tion interfaces. Altogether, our work enables ML model introspection
through visualization interfaces, fostering the understanding of differ-
ent aspects within the ML pipeline.

Communication Education————

Bauerle et al. 2021, TVCG Bauerle et al. 2022, TVCJ
Net2Vis - A Visual Grammar exploRNN: Understanding
for Automatically Generating Recurrent Neural Networks

Publication-Tailored : g
CNN Architecture Visualizations through Visual Exploration

~———Quality Assurance

Bauerle et al. 2020, CGF
Classifier-Guided Visual Correction
of Noisy Labels
for Image Classification Tasks

Bauerle and Cabrera et al. 2022, CHI
Symphony: Composing Interactive

L Interfaces for Machine Learning)

Figure 2.1: We developed visualization interfaces in three different categories.
Quality assurance is supported by our approach to correct mis-
labeled training data. Research communication is improved by
Net2Vis, which simplifies and unifies the generation of CNN
architecture visualizations. exploRNN supports learners who are
interested in understanding RNN architectures. Finally, to pro-
vide a unified framework for ML visualization interfaces, we
developed Symphony.

Figure 2.1 depicts how our publications included in this work ad-
dress three aspects of the ML development pipeline. These aspects
are quality assurance, communication, and ML education. To sup-
port quality assurance, we present a method to correct mislabeled
training data for image classification tasks [BNR20]. Here, we use the
classifier itself to guide practitioners to potentially mislabeled data
samples. Then, human observers can correct the data set by changing
labels or removing data points. Second, to enhance research commu-
nication, we developed a method for generating CNN architecture
visualizations directly from the code that defines them [BOR21]. This
visualization interface provides a design language that can be used
for different models and supports practitioners in their paper writ-
ing process. Third, we introduce exploRNN which is an interactive
visualization interface to teach the concepts behind recurrent neural
networks [Bau+22b]. This interactive learning environment has been
developed following predefined educational objectives and challenges.
We also tested the usefulness of learning environments like exploRNN
by comparing the learning outcome, required cognitive resources, and
joy while learning to a conventional text-based learning environment.

13

14

CONTRIBUTIONS

In sum, visualization interfaces such as the ones we developed for qual-
ity assurance, communication, and education help make introspection
techniques accessible to their intended target users.

Finally, while such visualization interfaces can support investigating
specific aspects of the ML pipeline, they are rarely designed to be
reused in different contexts or by different stakeholders. We devel-
oped Symphony [Bau+22c] to support such reusability and shareability
while maintaining the explorability of visualization interfaces for ML
introspection. The Symphony framework is designed to unify the
landscape of ML interfaces. With Symphony, ML interfaces can be
combined and reused in different environments, such as computa-
tional notebooks and web-based dashboards.

2.1 CLASSIFIER-GUIDED VISUAL CORRECTION OF NOISY LABELS
FOR IMAGE CLASSIFICATION TASKS [BNR20]

Modern DL models require large training data sets to unfold their
generalization potential. As such, training data sets for image classi-
fication models nowadays contain up to 10 million images [Kuz+20].
For classification models, these large data sets need to be labeled so
that the model can be trained on the loss measured between a model
prediction and the ground truth label of a training data sample. As-
signing ground truth labels for such a large number of images is not
feasible for any single person, and paying domain experts to label
large numbers of images is often too expensive. Therefore, labeling
is often outsourced to crowdworkers who do not necessarily have
the domain knowledge to correctly label every single image [KLA17;
Ras+10]. Sometimes, automatic approaches are even used to obtain
labels for image data sets [Usa+11]. These approaches take into ac-
count available information about the images in the data set, e.g.,
captions or descriptions, to assign labels to a large number of im-
ages automatically. Just like obtaining labels from non-expert human
annotators, automatically extracting labels from metadata is error-
prone [Zha+21]. However, when the training data contains incorrect
labels, model performance can degrade quite drastically [NOPF1o0;
Pec+06]. To address this issue, we worked on quality assurance for
ML applications through a visualization interface. This visualization
interface uses the trained classifier as a guide to potentially mislabeled
data. Practitioners can make use of this guidance for interactive label
error correction.

CONTRIBUTIONS

In this work, we make three main contributions towards detecting
and correcting errors in labeled training data. First, we propose a
categorization of common types of errors in image classification train-

2.1 CLASSIFIER-GUIDED VISUAL ERROR CORRECTION

ing data. Second, we develop measures that take these error types
into account. With these measures, users can be guided to potential
errors in the data set. Third, we provide a visualization interface that
incorporates these metrics as means for user guidance and allows for
a direct manipulation of labels. Altogether, our approach is based on
the classifier output itself and requires no additional information to
facilitate error correction.

IMPLEMENTATION

We identified three main types of errors that may occur in labeled
image classification training data. Class Interpretation Errors (CIEs)
occur when a labeler confuses two classes (e.g., the way of writing ones
and sevens between different western cultures). Since entire classes are
confused for this type of error, there exists a set of training samples
where all images are mislabeled in the same way. To detect candidates
for this type of error, we search for unusually large numbers of data
samples that are labeled as {j but classified as y. In contrast, Instance
Interpretation Errors (IIEs) occur when only one single data point
has been mislabeled. One way these types of errors typically get in-
troduced is through plain misclicks. To guide users to these types of
errors, we search for data samples that are confidently misclassified.
Mathematically, this means that the assigned classification probability
for label y is much larger than that for {J. For spotting Similarity Errors
(SEs), we extract images that are highly similar through similarity met-
rics. We use SSIM as a similarity metric [Wan+o4], but any similarity
metric for images would work in this context. To reduce the number
of images we need to calculate similarity scores for, we only measure
similarity between images that the classifier assigned the same label to.
If the classifier already sees two images as different enough to assign
different classification results, we assume that these images must be
sufficiently different.

While these error types helped us design metrics that can guide
users to error candidates, there is no guarantee that error candidates
extracted through these metrics actually correspond to labeling errors.
Instead, for CIEs and IIEs, there is always the possibility that the
model is just not performing well on these samples, while SEs might
be intentionally added to augment the data distribution or emphasize
certain important image features. Therefore, extracted error candidates
require human oversight before being resolved. We support such
human oversight in a three-step process. Practitioners first need to
detect potential errors in classification training data, then they can
reason about these error candidates, before eventually resolving them.

In our visualization interface, detecting error candidates is sup-
ported through visual guidance. This guidance is implemented through
the visualization of the aforementioned metrics. For both CIEs and

15

16

CONTRIBUTIONS

El
=
‘

Computer

|
20

-

|
2

Il 1Mo

EEENEOEENS
o [0 [[+]

NS ESEO0ANE
NESEANSNEGE
i1l b ol slolo ke

Figure 2.2: A modified confusion matrix is used to guide practitioners to
potential labeling errors in the training data set. Cells are sorted
according to their CIE score, bars indicate IIE scores, and du-
plicate icons depict high SE scores. Figure taken from Bé&uerle
et al. [BNR2o0].

IIEs, we are only interested in data samples where the classifier dis-
agrees with the human annotator. To guide users to these samples,
we organize the data in a modified confusion matrix as shown in Fig-
ure 2.2. Cells that contain correct classifications (agreement between
annotator and classifier) are not as important for error detection. There-
fore, we can use these correctly classified samples as visual anchors,
placing them in the first column of the matrix to resolve the label that
was assigned for all data samples in the respective row. To highlight
potential CIEs, we sort the rows so that rows that contain more mis-
classified images appear at the top. Within each row, we further sort
all cells from left to right by the number of misclassifications they
represent. As this reorganization removes the columnar mapping of
columns to model predictions, we place a representative data sample
in each cell to clarify the model prediction it represents. To further
highlight potential CIEs, cells that represent large numbers of mis-
classifications are colored in blue. For IIEs, we are interested in the
most confident misclassifications, i.e., where the model assigns a much
higher probability to y than {j. To visualize this confidence score, we
display a histogram within each cell, whereas the vertical positioning
of a histogram bar indicates misclassification confidence. The most
confident misclassifications are thus represented by bars close to the
top of a cell. SEs can occur in any cell regardless of whether it rep-

2.1 CLASSIFIER-GUIDED VISUAL ERROR CORRECTION

resents misclassifications. To guide users to these error candidates,
we place a duplicate icon over any cell that contains samples with a
high similarity score. Altogether, this overview visualization guides
practitioners to all three types of typical labeling errors we identified
for image classification training data.

To reason about error candidates, one can look more closely at the
data samples that one of the cells in this matrix visualization contains.
For large numbers of samples, i.e., for CIEs, we display a list of all
samples within one cell. To spot IIEs, we use a projection visualization
of the images. IIEs typically represent a different data distribution than
plain misclassifications as they display a different class. Therefore, IIEs
can often be found by looking at outliers that are well visible using
such a projection [Mcl+18]. For SEs, the most similar images of the cell
are displayed separately in a list so that they can be easily compared.
Looking at these images in detail allows practitioners to make an
informed decision on the correctness of individual data samples.

Finally, to resolve error candidates, labels can be either confirmed
or changed directly in our visualization interface. Additionally, if
duplicates have been found or a data sample does not appropriately
represent any label, data samples can also be removed entirely from
the data set. The whole process of training a classifier, obtaining error
scores, and visually investigating potential errors can be repeated
multiple times, as with each iteration, different images might be
suggested as error candidates. Once data quality is sufficient, the data
set and model can go into productive use (see Figure 2.3).

FINDINGS

During this research, we found several errors in real-world benchmark
data sets such as MNIST [LC10] and CIFAR 10 [Kri+og]. Additionally,
to evaluate our approach, we conducted a qualitative user study with
10 participants. After a brief introduction, participants were asked
to correct an intentionally corrupted version of the MNIST data set
within a 15 minute session of using our visualization interface. We
introduced all three error types, which resulted in 3,300 incorrect
labels and 5 duplicates in total. All participants resolved all duplicates
and changed the labels of 2,902 images on average. Of these changed
labels, an average of only 27.5 labels were incorrectly changed. In total,
they managed to correct 85.65% of the mislabeled data in just this one
15 minute session. On average, this increased classifier accuracy from
94.37% t0 99.05%. In turn, we conclude that this method works for the
intended use case of correcting mislabeled image classification training
data. When looking at the images that were incorrectly changed, we
found that many of them could be argued to be incorrectly labeled in
the original data set instead.

17

18 CONTRIBUTIONS

Labeled

Data Classification

Automatic Error

Training Detection

Visual Error
Correction

Productive
Use

Figure 2.3: We use the classifier to guide ML practitioners to error candidates
in a training data set. Then, errors can be reasoned about and
resolved within a visualization interface. After this correction
process, the data set and model can either be used productively
or refined through further iterations of data correction. Grey
boxes are existing steps of the process, while red boxes represent
what we propose to add. Figure taken from Béuerle et al. [BNR20].

Overall, this project presents a technique to extract error candidates.
These error candidates can then be interactively corrected through
a visualization interface to ensure classifier quality. To support error
correction, we propose a categorization of typical error types for image
classification data. Through measures that are based on classifier
response analysis, we provide means to identify candidates for these
error types. Finally, to detect, reason about, and resolve potential
errors, we implemented a visualization interface that incorporates
the aforementioned metrics. In a qualitative user study, we saw that
the proposed approach helped correct errors in a corrupted image
classification data set.

2.2 NET2VIS — A VISUAL GRAMMAR FOR AUTOMATICALLY GEN-
ERATING PUBLICATION-TAILORED CONVOLUTIONAL NEURAL
NETWORK (CNN) ARCHITECTURE VISUALIZATIONS [BOR21]

The second focus area in this thesis was the communication of findings
about ML data or models. As shown in Figure 2.4, we saw a clear
trend toward including such figures in research papers at prime con-
ferences for vision-related ML tasks. However, when looking at how
visualizations of ML model architectures are used in publications, we
found that mostly one-off, handcrafted visualizations are employed.

2.2 NET2VIS

In turn, these figures lack a common visual grammar as different
researchers create figures based on their gusto and capabilities rather
than agreed-upon conventions. Creating such figures also requires a
significant time investment that could otherwise be directed towards
improving the main content of the publication. Finally, handcrafted
figures are error-prone since they are often generated just before pub-
lication. Based on these findings that we extracted from a survey of
existing publication figures, we set out to develop Net2Vis. Net2Vis
simplifies and unifies the creation of publication-tailored CNN model
architecture visualizations.

225

extracted Figures
@
o

~
ol

Conference

Figure 2.4: Number of CNN architecture figures we extracted from all ICCV
and CVPR papers between 2013 and 2019. We searched for pages
of papers containing figures and the words figure and architecture
in the same line to extract these. Then we manually filtered them
to obtain only neural network architecture visualizations. Figure
recreated based on Bauerle et al. [BOR21].

CONTRIBUTIONS

In this work, we make three contributions towards simplifying and
enhancing the presentation of CNN model architectures. First, based
on expert feedback and the evaluation of a set of existing visualiza-
tions, we propose requirements for an effective communication of ML
model architectures. Second, we developed a visual grammar for CNN
architecture visualizations and provide an online platform where ML
practitioners can obtain publication-tailored visualizations directly
from the code that defines their architectures. Third, we release a data
set of 751 annotated neural network architecture visualizations that
have been extracted from all papers published at ICCV and CVPR
between 2013 and 2019.

19

20

CONTRIBUTIONS

IMPLEMENTATION

While there exist other approaches to automatically generate visual-
izations of neural network architectures, neither of them is designed
for the compact visualization of modern neural network architectures
that is required for publication figures. Visualization approaches such
as TensorBoards graph visualizer [Won+17], Cafe’s Netscope [Gsc17],
and Netron [Roe18] are powerful visualization interfaces that sup-
port all kinds of architectures. However, they are designed for use
during the development of neural network models. As such, these
interfaces show a detailed, vertical visual encoding, which can help
investigate an architecture in detail but would not fit into a publi-
cation. There are also more abstract visualization approaches such
as convnetdrawer [Uch19] and drawconvnet [Din18]. However, these
visualization environments do not support modern neural network
architectures as they cannot display parallel execution paths or aggre-
gations of layers. To fill this gap, we developed Net2Vis, an interactive
interface for the generation of visualizations based on the Net2Vis
visual grammar. An example of a figure generated with Net2Vis can
be seen in Figure 2.5.

952X952
A

952X957

x 952%957
X

821821

1| 8zrx8et

»

2
2
3
= w
64 & 64 % i R
128 % 128 2 2 o <] m 3
3 256 X 256 % ™ = m ¥ =
= Vos12 R os12 @ os12 ¥ 124 =
& z &
Conv MaxPool UpSampling Concatenate Basic Up

Figure 2.5: Visualization of a U-Net variant. It was automatically generated
using Net2Vis based on the Keras code describing the architec-
ture. Data flows from left to right. Glyphs represent layers or
aggregates, while lines represent connections. Glyph widths com-
municate feature size, while heights communicate the spatial
resolution. Both values are also given through labels. Dashed
boxes on the left and right serve as placeholders to provide in-
put and output samples. The legend communicates layer types
and the composition of aggregates. Figure taken from Béauerle
et al. [BOR21].

As a foundation for our proposed visual grammar, we analyzed and
annotated 751 neural network architecture figures, which we extracted
from ICCV and CVPR papers that were published between 2013 and
2019. We coded each visualization based on different attributes, such
as what dimensionality the encoding uses, how layers are laid out,
how connections are visualized, and more. Additionally, we talked
to ML practitioners who worked on some of these publications to
obtain direct feedback about their needs and wants. Based on this
analysis, our visualization design incorporates considerations for both

2.2 NET2VIS

visualizing the overall model structure and how to encode individual
layers.

For an overview, the most important piece of information that needs
to be communicated about a neural network architecture is the data
flow through a model’s layers. We follow the reading direction of
most western cultures and position the layers of the neural network
architecture from left to right. As modern architectures can contain
parallel execution steps, we draw lines between a layer that sends data
to another layer. However, such a line-based encoding can introduce
size-related attention bias, where the centerline of the visualization is
seen as more important than separate paths of execution. As there is
no importance ranking in neural network architectures, our goal was
to mitigate this size-related attention bias. Therefore, we add multiple
handles to layers that start or combine parallel execution steps. With
this visual encoding, the flow of data is communicated in a way that
supports and promotes CNN architectures. However, the resulting
visualized graphs can exceed the space that is typically available for
such a figure in a publication. To compact the resulting graphs, ML
practitioners can combine repeated structures in their networks into
groups. Such combinations are replaced with a single layer glyph and
resolved in a legend that maps layer types to colored glyphs.

The visual encoding of an individual layer in a neural network
model in Net2Vis is focused on communicating the important trans-
formation into and out of latent space. For this data transformation
to be communicated effectively, we map the height of a layer glyph
to the spatial resolution it operates on. However, assigning one fixed
height to a layer glyph leaves the question of how a layer that changes
the spatial dimension of the data through its operations should be
depicted as the incoming data dimensionality does not match the
dimensionality after the layer has been applied. To remove this am-
biguity, we assign different height values to the respective ends of a
layer, thus mapping the height on the left side of a layer glyph to the
incoming data dimensionality and the height on the right side of a
layer glyph to the transformed data dimensionality. Closely related to
the spatial resolution of data is the number of features that are used
to encode the data. Therefore, we use a similar encoding to what is
employed for the spatial resolution and communicate the number of
feature channels through the width of a layer glyph. Since the number
of feature channels is based on one fixed value that the programmer of
a neural network architecture sets upon initializing a layer, there is no
need to differentiate between unprocessed and processed numbers of
feature channels. In turn, we can use one fixed width value to encode
the number of feature channels that a layer operates on. In addition to
visualizing the data transformation of a neural network layer, we also
communicate the layer type in our visual grammar for neural network
layers. While many current visualization approaches use a textual en-

21

22

CONTRIBUTIONS

coding of the layer type, layers are typically repeated throughout the
network structure. Thus, to reduce repetition, we color-code layers and
resolve their types in a legend below the main network visualization.

While this encoding on both a network and layer level provides
a common visual grammar for CNN architectures, it does not nec-
essarily simplify the creation of such visualizations. To address the
problem, which is that authors of publications need to spend valuable
time on creating and refining such CNN architecture visualizations,
we additionally provide an interactive visualization interface with
which such publication figures can be created. In this interface, ML
practitioners can obtain visualizations by simply pasting their CNN
model code, which gets automatically transformed into a visualization
using the aforementioned visual grammar. After parametrizing the
visualization, e.g., through adding groups, changing colors, or adjust-
ing sizes, ML practitioners can then download a publication-tailored
visualization of their model architecture.

FINDINGS

To evaluate our visual grammar, we conducted a quantitative user
study with 10 participants. Hereby, we used visualizations of architec-
tures from well-cited publications that were obtained through Net2Vis,
TensorBoard, and the paper figures themselves. We then showed these
visualizations one after the other to our participants and asked them
to answer questions such as “how much downsampling does this model
do?” or “how many convolution layers does this model include?”. In this
evaluation, visualizations generated with Net2Vis were shown to be
the most accurate. Additionally, in a follow-up questionnaire where
we showed the same architecture using the three aforementioned en-
coding variants (Net2Vis, TensorBoard, paper figure), Net2Vis was
preferred by most participants. We also already saw the adoption of
Net2Vis in newly published research [Sar+21; Ver+22].

In summary, Net2Vis improves research communication through
automatic visualization generation. Net2Vis is supported by a visual
grammar that is based on the analysis of existing CNN architec-
ture visualizations, visualization knowledge, and expert feedback.
To simplify the creation of said CNN architecture visualizations, we
implemented a visualization interface that provides such visualiza-
tions using only the code that defines an architecture as input. Our
quantitative evaluation that compares Net2Vis with other common
visual encodings further indicates that Net2Vis works better than
other methods currently used for communicating CNN architectures
in publication figures.

2.3 EXPLORNN

2.3 EXPLORNN: UNDERSTANDING RECURRENT NEURAL NETWORKS
THROUGH VISUAL EXPLORATION [BAU+22B]

The third focus area for visualization interfaces that has been ad-
dressed in this thesis is educating learners about the concepts behind
neural networks. Education becomes ever more important as DL is
adopted in diverse fields, bringing new learners with different back-
grounds to neural network education. To support this growing need
for learning material, we present exploRNN, an interactive learning en-
vironment that teaches the concepts behind RNNs and long short-term
memory (LSTM) cells. Other network types such as feed-forward neu-
ral networks [Smi+17] and generative adversarial networks [Kah+18b]
have already been targeted by researchers developing interactive learn-
ing environments. However, education in the growing field of sequen-
tial data processing, which is often performed with RNNs, is still
mostly based on conventional methods such as lectures or textual
learning material. The advantage of interactive learning environments
compared to lectures is that they don’t need teacher supervision. How-
ever, it is not clear how interactive learning experiences compare to
the similarly self-paced text-based education, which we investigated
in our research.

CONTRIBUTIONS

exploRNN is the first interactive educational visualization interface
designed specifically to convey the unique architecture and functional-
ity of RNNs to learners. The development of exploRNN was driven by
educational objectives and design challenges that arise in the context
of RNNs. Our quantitative user study which compares exploRNN
against text-based learning evaluates the learning outcome, required
cognitive resources, motivation, and joyfulness of the learning ex-
perience. The results provide insights for future interactive learning
environments and indicate that more learners are willing to spend
more time learning with an environment like exploRNN.

IMPLEMENTATION

In this work, our goal was twofold, namely, to implement an interactive
learning environment for RNNs and to conduct the first quantitative
evaluation comparing such interactive learning environments to text-
based learning.

To inform our implementation of exploRNN, we first defined ed-
ucational objectives for the learning experience. These educational
objectives were created to both guide our visualization design and
serve as a foundation for what to test in our evaluation. We defined
four educational objectives for exploRNN which are briefly described

24

CONTRIBUTIONS

in the following. First, the justification for when to use RNNs over
other network architectures should be clarified by exploRNN. This also
includes the backpropagation mechanisms for RNNs, namely back-
propagation through time (BPTT). Second, learners should be taught
how LSTM cells are built to understand how temporal information
can be captured by RNNs. We focused on the LSTM cell architecture
as one of the most frequently used [WGY18] and best performing
cell architectures [Bri+17]. However, the learned ideas are expected to
be transferable to other cell types. Third, the RNN training process
should be communicated by exploRNN so that learners can apply the
gained knowledge in their own DL projects. Finally, learners should
get an idea of the different tasks that can be solved with RNNs. Taken
together, these educational objectives are designed to give learners
an overview of the techniques from which further exploration and
experimentation are possible.

oxploRNN Funcion Data +

Figure 2.6: (A) Simple input types illustrate the abstract concepts behind
RNN:Ss. (B) An animated, modifiable network architecture shows
the data flow. (C) The prediction visualization shows the network
input, prediction, ground truth, and error bars, all animated
to communicate their temporal nature. (D) Text helps explain
the training process. (E) RNNs can be interactively trained. (F)
Training parameters can be interactively explored. Figure taken
from Bauerle et al. [Bau+22b].

exploRNN itself is an interactive learning environment designed to
transport these educational objectives. We implemented exploRNN
using a multiscale approach. Here, the overall training process is com-
municated as shown in Figure 2.6, but we also educate about details
of the computation inside of individual cells (see Figure 2.7). Further-
more, we provide textual explanations for many elements on both
levels that allow learners to inspect specifically those components that
are important to them (see Figure 2.7). This multiscale approach of in-
formation transportation adopts the overview first, zoom and filter, details
on demand visualization mantra proposed by Shneiderman [Shno3]

The network overview which is shown in Figure 2.6 consists of six
main elements. The input data to train the network is visualized on the

2.3 EXPLORNN

left of this view. Users can select simple functions but also text snippets
as training input. Including both function and text data facilitates
knowledge transfer to new, more realistic settings. The selected type
of training data is animated to symbolize the flow of data into the

network. We depict the model itself via glyphs for individual layers.

To communicate recurrence, we add a loop to each layer glyph. Lines
that transport data are animated so that they move in the direction of
data flow (forward during inference, backward during training). The
input data and predictions are shown on the right of this view. In this
visualization, the ground truth and error are also shown. Thus, users
can learn how the model improves its prediction over the course of the
training process. Below these main visualizations are more detailed
explanations, controls for the training process, and settings for training
hyperparameters.

LSTM Cell (Network Data (i

eeeeeeee

23

Figure 2.7: (G) Visualization of data flow through the cell. (H) Input to the
network and its prediction. Visualization of the training error
computation. A grey sliding window indicates which data points
are needed to initialize the cell state. (I) Explanations with more
detailed steps for the forward direction of data flow. (J) The speed
at which the visualization for cell steps advances can be changed.
(K) Just as in the network overview, users can modify training
parameters. Figure taken from Béuerle et al. [Bau+22b].

In the LSTM cell view, which learners can access through the se-
lection of one layer in the network overview, we show an LSTM cell
with all its computation units. Additionally, the data processed by
the network and, similar to the network overview, controls for the
training process (see Figure 2.7) are displayed. In contrast to the net-
work overview, training progresses more slowly in this visualization
to show the individual computation steps inside the cell gates. Again,
connections between cell components that transport data are animated,
and the input, prediction, ground truth, and prediction error are visu-
alized.

25

26

CONTRIBUTIONS

Memory Cell

The is the heart of any LSTM cell. By having a cell state, and
deciding how to update it based on
LSTM cells are able to

¢! = filtered_input + filtered_state

Symbols:

c' : the cell state at timestep t

Figure 2.8: Users can access more detailed explanations for many elements of
our visualizations, such as training steps, hyper-parameters, and
operations in a cell. Figure taken from Béduerle et al. [Bau+22b].

We implemented exploRNN as a web application using Tensor-
flow]S [Smi+19]. Throughout our visualizations, we use animation to
convey the sequential flow of data inside the RNN. To prevent the
need for teacher supervision, we implemented an onboarding process,
which explains the functionality and concepts behind exploRNN. Tex-
tual explanations are used throughout exploRNN to provide details
on demand.

FINDINGS

To evaluate exploRNN, we conducted a quantitative user study with
37 participants. Our study was set up as the last lecture of a DL course,
so students already knew about feed-forward NNs. Each participant
either used exploRNN or received a learning text to learn about RNNS.
We evaluated the learning outcome divided into recall, comprehension,
and transfer [Blo+56]. Furthermore, we measured the cognitive load
that the learning experience inflicted on learners, divided into intrinsic,
extraneous, and germane cognitive load [Swe11]. Finally, we also used
the System Usability Scale (SUS) [Bro+96] to evaluate the usability of
exploRNN and asked the participants qualitative questions about the
learning environment.

We could not find a significant difference in learning outcome
between exploRNN and text-based learning. In fact, for superficial
knowledge acquisition (recall), we even found that the text condition
led to better learning results. However, learning with exploRNN re-
quired fewer cognitive resources. exploRNN also proved to create
a more likable and fun learning experience. While we did not test
this hypothesis, reduced cognitive load in combination with a more

2.4 SYMPHONY

enjoyable learning experience might lead to more time spent learning.
In turn, visual and interactive learning environments might still lead
to a better learning outcome over a longer period. We hope that these
insights can guide the development of future learning environments
and motivate further comparative evaluations of visual and interactive
vs. classical learning.

In this work, we present an interactive learning environment for
RNN education. With our visualization approach, we provide an
overview of the training process but also let learners explore individ-
ual components in detail. exploRNN is designed based on educational
objectives for RNN education. Our evaluation is the first to qualita-
tively compare an interactive NN learning environment with classical
learning approaches.

2.4 SYMPHONY: COMPOSING INTERACTIVE INTERFACES FOR MA-
CHINE LEARNING [BAu+22cC]

The aforementioned projects are all standalone visualization interfaces
that address one specific task or problem. Apart from the interfaces
presented in this thesis, there exist numerous ML visualization inter-
faces. Examples of such interfaces are documentation methods (e.g.,
Model Cards [Mit+19], Datasheets [Geb+21]), visualization dashboards
(e.g., What-if Tool [Wex+20], ActiVis [Kah+18a]), and interactive pro-
gramming widgets (e.g., ipywidgets [Jup21], Streamlit [Inc21b]). All
of these ML interfaces support practitioners in specific aspects of their
model or data analysis needs. Despite the benefits of these interfaces,
recent studies [Zha+20; Koe+19] and interviews we conducted with
practitioners revealed that these ML interfaces have limited adoption
in practice. To address this issue and simplify the adoption, combi-
nation, and reusability of ML interfaces, we developed Symphony.
The Symphony framework is designed to unify the landscape of ML
interfaces, making them accessible across platforms and for different
stakeholders.

CONTRIBUTIONS

With Symphony, we designed a framework to unify the landscape
of ML interfaces. Our design process included formative interviews,
participatory design sessions, and case studies on deployed ML work-
flows. Altogether, we collaborated with 39 ML practitioners across 15
product and engineering teams. Symphony can be used to compose
data-driven ML interfaces that include task-specific visualizations
and allow for interactive exploration. These interfaces can be reused
by different stakeholders and shared across environments, such as
computational notebooks and standalone web dashboards.

27

28

CONTRIBUTIONS

IMPLEMENTATION

Our formative interviews with 9 ML practitioners surfaced three
main problems that hinder the adoption of current ML interfaces.
First, practitioners often use ad-hoc tools and analyses that cannot
be easily reused and require extensive manual labor to create. This
is because no visualization interface exists that matches the specific
needs of ML practitioners. Second, existing ML interfaces are limited
as most of them require time-consuming data preprocessing before
they can be used. Often, this even requires a move to new platforms
or environments, disrupting the workflow that practitioners have.
Furthermore, sometimes existing interfaces are not designed for the
data types that ML practitioners are working with. Finally, we found
that there is a lack of communication between different stakeholders
working on an ML project. As those stakeholders often work on
different platforms, it is hard to share insights gained through ML
analysis.

Based on these insights, we set out to build Symphony, a frame-
work to unify the landscape of ML interfaces. The goal of Symphony
is to provide ML interfaces that are connected to the ML system’s
backing data, in turn supporting the task-specific visualizations that
are needed by practitioners. On top of that, Symphony is designed to
provide interactive exploration tools that allow for flexible discovery
and validations, and to make components reusable across different
environments, domains, and tasks.

Computational Notebooks Symphony Reports and Dashboards

import symphony Interactive Components for Machine Learning

sses
L LY
ssee
L J T

Code Environments Web-based Uls

Figure 2.9: Symphony provides interactive visualization components which
can be used in different environments, namely Jupyter notebooks
and web-based dashboards. Figure taken from Bauerle and Cabr-
era et al. [Bau+22c¢].

The primary concept behind Symphony, which is depicted in Fig-
ure 2.9, is based on an expandable set of components with synchro-
nized, interactive visualizations. These components can be used across
different mediums, such as computational notebooks or web-based
dashboards and reports. This allows engineers to do exploratory model
development while other stakeholders, such as decision-makers or
policymakers, may view the same analyses on a web-based dashboard.

As shown in Figure 2.10, Symphony’s visualizations are informed
directly by a practitioner’s data. This data includes both metadata of
an ML model or data set as well as the raw data samples. Based on this

2.4 SYMPHONY

Symphony Input Symphony System Wrapper
Data Table & Files Interaction Tools Shared State Components
Ul Interaction o | -
. - Groups Selection SEESES =~
S[ISTS = A
4 o Y @; %
E’; | Code Interaction .. 4
— Filters Settings
_;.q = 10 (1% report.set_filter("d. label = “dog") s

Figure 2.10: Backing data is used by Symphony’s system wrapper to pro-
vide interactive, synchronized visualizations in different environ-
ments. Figure taken from Béuerle and Cabrera et al. [Bau+22c].

backing data, Symphony includes modular visualization components
that can be combined into Symphony reports. In our implementation,
visualization components are provided as Python packages, which
makes them shareable and reusable across teams or institutions via
PyPi. A shared state functions as a representation of that data for all
visualization components that are in use. Interaction tools, which can
be Ul-based or code-based, provide means to modify said shared state.
New visualization components can be implemented in JavaScript,
which makes them more flexible compared to other common charting
libraries such as Matplotlib [Hunoy] or Altair [Van+18].

System wrappers make components available in different environ-
ments so that stakeholders can use them on their preferred platforms.
These wrappers pass data from a backing environment to Symphony
and render Symphony components within the environment’s UI. We
implemented wrappers for Jupyter notebooks as well as web-based
Uls. An example of how the same visualization components are made
available by Symphony can be seen in Figure 2.11. As such, ML prac-
titioners can start their model or data exploration in computational
notebooks, assembling the visualization components required for their
analysis. Once they want to share insights or add other stakehold-
ers to the analysis process, they can export the generated symphony
report as a standalone, statically hosted web dashboard. Altogether,
this allows for reuse and combination of visualization components,
enables exploration through interactivity, and fosters communication
through its shareability.

FINDINGS

We evaluated Symphony through three case studies with ML practi-
tioners working on real-world ML products. In think-aloud studies
that lasted 60 minutes, ML practitioners used Symphony’s Jupyter
environment as well as the standalone dashboard. The case studies
were conducted with three different teams, where the tasks were val-
idating and sharing data patterns of a data set creation team, debugging
training data of an accessibility team, and promoting data exploration for
ML novices in an education team, respectively. Throughout these case

29

30

CONTRIBUTIONS

A Symphony in Notebooks B Symphonyin Web-based Uls

Description ©
Overview

Figure 2.11: The same visualization components can be used both in compu-
tational notebooks (A), as well as in web-based dashboard Uls
(B). Figure taken from Bé&uerle and Cabrera et al. [Bau+22c].

studies, Symphony enabled practitioners to discover issues with their
data or models and encouraged them to share their insights with other
stakeholders.

Altogether, Symphony adopts the idea of task-specific visualization
components that can be reused in different environments and by
different stakeholders. Furthermore, Symphony brings the landscape
of ML interfaces closer together, as different interfaces can be flexibly
composed, all operating on the same shared data. In turn, Symphony
fosters a culture of shared ML understanding and encourages the
creation of accurate, responsible, and robust AI products.

CONCLUSION

The work that influenced this thesis is summarized in Figure 3.1. This
thesis includes four main contributions, which are highlighted with
large circle markers. These main contributions include three visualiza-
tion interfaces covering the areas of quality assurance, communication,
and education. Furthermore, Symphony, a framework that brings
different visualization interfaces together and fosters shareability of
analyses, is included as one of the main publications in this work.
Apart from these main contributions, this thesis was also influenced
by further publications. These cover the wide range from pure in-
trospection techniques to pure visualization interfaces. Some of this
additional work was done during internships at Google and Apple.

} [Visualization Interface]
Bauerle et al. 2020, CGF
Classifier-Guided Visual Correction of Noisy Labels for Image Classification Tasks

Bauerle et al. 2021, TVCG

Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations

Béuerle et al. 2022, TVCJ
exploRNN: Understanding Recurrent Neural Networks through Visual Exploration

2 Bauerle and Cabrera et al. 2022, CHI
.Symphony: Composing Interactive Interfaces for Machine Learning

[Introspection Technique

@ Aka et al. 2021, AIES G
Measuring Model Biases in the Absence of Ground Truth

Béuerle et al. 2022, arXiv @
Visual Identification of Problematic Bias in Large Label Spaces

@ Béuerle and Wexler 2020, VISxAI
What does BERT dream of?

° Weber et. al. 2020, Journal of Microscopy
Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning

Béuerle and van Onzenoodt et. al. 2022, CGF @

; . Where did my Lines go? Visualizing Missing Data in Parallel Coordinates
o Béuerle and Jénsson et. al. 2022, arXiv

Neural Activation Patterns (NAPs): Visual Interpretability of Learned Concepts

Figure 3.1: Overview of the contributions that influenced this thesis. Large
marks represent the main contributions that are part of this thesis
while small marks depict contributions that influenced this thesis
but are not part of its main content. Some of this work has been
conducted during internships at Google and Apple.

In the following, we talk about future work at the intersection of
introspection techniques and visualization interfaces. Finally, we will
briefly summarize the contribution that this thesis makes to the field.

3.1 FUTURE WORK

Our work brings improvements to various elements of the ML pipeline
across different application areas. However, the need for better intro-
spection techniques and visualization interfaces is still more present
than ever. In the following, we summarize some of the most promising
directions in which future work could bring great improvements.

31

32

CONCLUSION

Introspection Techniques.

Various model attributes have not yet been studied exhaustively. For
example, in our preprint on neural activation patterns [BJR22], we
search for clusters in the activation space of neural networks. This is
only one example of how the attributes of a neural network can be
used to provide introspection techniques. Further investigations into
the role of activations, connection weights, and their change during
training might bring new introspection techniques that help explain
the functionality of a neural network. Furthermore, introspection tech-
niques are often used in isolation. Combining multiple introspection
techniques effectively and understandably could lead to a more com-
plete picture of a neural network and its decisions.

Additionally, while a lot of focus has been put on introspecting
CNN-based image classification models, other model architectures are
still missing a similar set of introspection techniques. If we, e.g., take
the field of feature visualization, there are numerous publications on
how to use this technique to systematically probe into and understand
CNN models [OMS17; Ola+18; Car+19; Cam+20]. These techniques
do not yet work as well for other network architectures [PRS18] such
as transformers [BW20]. Work on the systematic explainability of
transformers is still in its early stages [Elh+21]. However, introspec-
tion techniques are important for any network architecture, which
calls for cross-functionality. If we are unable to provide introspection
techniques that are architecture-independent, the landscape of intro-
spection techniques will always struggle to keep up with the newest
architectural trends.

Finally, the introspection techniques we develop need to be evalu-
ated to ensure they live up to their promises. For attribution techniques,
a substantial amount of auditing research has been conducted, e.g.,
[Ade+18; Ade+20; DS22]. These auditing methods show that many of
the regularly employed introspection techniques have serious flaws,
which calls for more reliable approaches. Additionally, for introspec-
tion techniques to be widely used and reliable, auditing approaches
that systematically test their efficacy are essential. Especially introspec-
tion techniques that are designed to explain what a model has learned
instead of focusing directly on an input sample and its corresponding
prediction are lacking auditing methods.

Visualization Interfaces.

In the area of visualization interfaces, we have seen a lot of focus
on specific settings. Namely, ML developers performing classification
tasks on structured or image data have seen most attention. However,
modern ML systems can encompass complex data types and target end
users without ML knowledge. Visualization interfaces need to account
for this need by supporting different types of data and ML models.

3.2 SUMMARY OF CONTRIBUTIONS

Furthermore, it is crucial to enhance the interaction with ML systems,
display prediction confidences, and highlight the limitations of an
ML system’s capabilities for domain experts who lack ML knowledge.
As such, visualization designs for ML novices have to be easier to
understand and must explain concepts on a different, higher level.

A lot of the visualization work so far has also focused on individ-
ual, one-off visualization interfaces that are hard to reuse, combine,
and share. Therefore, we see limited adoption of these tools in prac-
tice [Bau+22c]. As a visualization and human-computer interaction
community, we should strive to improve the usability of these visual-
ization interfaces to foster their adoption in the field. With Symphony,
we made a first step towards that goal [Bau+22c], but to fully ad-
dress practitioners” ML analysis needs, many hurdles still need to
be overcome. Future work might be able to remove these hurdles by
streamlining explainables and promoting their integration into any
ML workflow. We have seen similar advancements in information
visualization, where tools like Tableau [LLC21], D3 [BOH11], and
Vega [Sat+15] greatly simplify visualization authoring. A similar im-
provement in the domain of ML visualization could both improve
our understanding of ML systems and cement the importance of
visualization as a research field in connection with ML.

3.2 SUMMARY OF CONTRIBUTIONS

In this dissertation, we set out to:

Develop methods for ML introspection
and make them accessible through visualization.

To this end, we present three publications that target different areas in
which they support the ML development pipeline through introspec-
tion and visualization. Through such introspection-based visualization
interfaces, we can learn about these ML systems, assure their quality,
and communicate our findings when developing or investigating such
systems. The first publication that we presented in this work explains
how a CNN classifier can be used to guide practitioners to potentially
mislabeled samples for data correction. Net2Vis, the second publica-
tion that was presented, provides means to automatically generate
publication-tailored CNN architecture visualizations for more unified
and less time-consuming research communication. Finally, exploRNN,
which provides an interactive learning environment for RNNSs, can
reduce the cognitive resources required during learning and provides
a learning experience that is more enjoyable and fun.

After we obtained experience in supporting practitioners with such
introspection-based visualization interfaces, we noticed that there was
still a gap that prevented a broad adoption of existing visualization

33

34

CONCLUSION

interfaces. Thus, to bring these diverse visualization interfaces closer
to the practitioners that need them, we developed Symphony. With
the Symphony framework, visualization interfaces can be reused, com-
bined, explored, and shared, fostering collaborative ML analyses.

While there are still many open research questions, our publications
show how visualization can help many aspects of ML introspection
become more accessible, creating a broader and deeper understanding
of different areas of ML systems. Furthermore, we made first steps
towards unifying the landscape of ML interfaces, which is important
to make the work of the visualization community more visible, usable,
and applicable for ML practitioners.

BIBLIOGRAPHY

[Ade+18]

[Ade+20]

[AH+18]

[Arn+19]

[AIEC20]

[BF18]

[Blo+56]

[BOH11]

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Good-
fellow, Moritz Hardt, and Been Kim. “Sanity checks for
saliency maps.” In: Advances in neural information process-
ing systems 31 (2018).

Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been
Kim. “Debugging tests for model explanations.” In: Pro-
ceedings of the 34th International Conference on Neural Infor-
mation Processing Systems. 2020, pp. 700-712.

Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor
Darrell, and Anna Rohrbach. “Women also snowboard:
Overcoming bias in captioning models.” In: Proceedings of
the European Conference on Computer Vision (ECCV). 2018,
pp. 771-787.

Matthew Arnold, Rachel KE Bellamy, Michael Hind, Ste-
phanie Houde, Sameep Mehta, Aleksandra Mojsilovig,
Ravi Nair, K Natesan Ramamurthy, Alexandra Olteanu,
David Piorkowski, et al. “FactSheets: Increasing trust in
Al services through supplier’s declarations of confor-
mity.” In: IBM Journal of Research and Development 63.4/5

(2019), pp. 6-1.

High-Level Expert Group on Artificial Intelligence Euro-
pean Commission. Assessment List for Trustworthy Artificial
Intelligence (ALTAI). 2020. URL: https://ec.europa.eu/d
igital-single-market/en/news/assessment-list-tru
stworthy-artificial-intelligence-altai-self-asse
ssment (visited on 11/27/2020).

Emily M Bender and Batya Friedman. “Data statements
for natural language processing: Toward mitigating sys-
tem bias and enabling better science.” In: Transactions
of the Association for Computational Linguistics 6 (2018),
pp- 587-604.

Benjamin S Bloom et al. “Taxonomy of educational objec-
tives. Vol. 1: Cognitive domain.” In: New York: McKay 20
(1956), p- 24.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
“D3 data-driven documents.” In: IEEE Transactions on
Visualization and Computer Graphics 17.12 (2011), pp. 2301
2309.

35

https://ec.europa.eu/digital-single-market/en/news/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://ec.europa.eu/digital-single-market/en/news/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://ec.europa.eu/digital-single-market/en/news/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://ec.europa.eu/digital-single-market/en/news/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment

36

BIBLIOGRAPHY

[Bri+17]

[Bro+96]

[BG18]

[Cab+21]

[Cab+19]

[Cam+20]

[Car+19]

[Che+21]

[Chi+19]

[Cho+15]
[Chu+16]

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc
Le. “Massive Exploration of Neural Machine Translation
Architectures.” In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. 2017,

PP- 1442-1451.
John Brooke et al. “SUS-A quick and dirty usability scale.”
In: Usability evaluation in industry 189.194 (1996), pp. 4—7.

Joy Buolamwini and Timnit Gebru. “Gender shades: In-
tersectional accuracy disparities in commercial gender
classification.” In: Conference on fairness, accountability and
transparency. PMLR, 2018, pp. 77-91.

Angel Alexander Cabrera, Abraham] Druck, Jason I
Hong, and Adam Perer. “Discovering and validating ai
errors with crowdsourced failure reports.” In: Proceed-
ings of the ACM on Human-Computer Interaction 5.CSCW2
(2021), pp. 1—22.

Angel Alexander Cabrera, Will Epperson, Fred Hohman,
Minsuk Kahng, Jamie Morgenstern, and Duen Horng
Chau. “FairVis: Visual analytics for discovering intersec-
tional bias in machine learning.” In: 2019 IEEE Conference
on Visual Analytics Science and Technology (VAST). 1EEE,
2019, pp. 46-56.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah,
Michael Petrov, Ludwig Schubert, Chelsea Voss, Ben
Egan, and Swee Kiat Lim. “Thread: Circuits.” In: Dis-
till (2020). URL: https://distill.pub/2020/circuits.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian John-
son, and Chris Olah. “Activation Atlas.” In: Distill (2019).
URL: https://distill.pub/2019/activation-atlas.

Changjian Chen, Jing Wu, Xiaohan Wang, Shouxing Xi-
ang, Song-Hai Zhang, Qifeng Tang, and Shixia Liu. “To-
wards better caption supervision for object detection.” In:
IEEE Transactions on Visualization and Computer Graphics
28.4 (2021), pp. 1941-1954.

Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser,
and Anthony Francis. “Learning navigation behaviors
end-to-end with autorl.” In: IEEE Robotics and Automation
Letters 4.2 (2019), pp. 2007—2014.

Frangois Chollet et al. Keras. https://keras.io. 2015.

Sunghyo Chung, Sangho Suh, Cheonbok Park, Kyeongpil
Kang, Jaegul Choo, and Bum Chul Kwon. “Revacnn: Real-
time visual analytics for convolutional neural network.”
In: KDD 16 Workshop on Interactive Data Exploration and
Analytics. 2016.

https://distill.pub/2020/circuits
https://distill.pub/2019/activation-atlas
https://keras.io

[DJL21]

[DS22]

[Din18]

[DVK17]

[Elh+21]

[Erh+o9]

[FV17]

[For+20]

[FCS21]

[Geb+21]

[Gle+20]

[Gsc17]

BIBLIOGRAPHY

Alex] DeGrave, Joseph D Janizek, and Su-In Lee. “Al for
radiographic COVID-19 detection selects shortcuts over
signal.” In: Nature Machine Intelligence 3.7 (2021), pp. 610—
619.

Jean-Stanislas Denain and Jacob Steinhardt. “Auditing
Visualizations: Transparency Methods Struggle to Detect
Anomalous Behavior.” In: arXiv preprint arXiv:2206.13498
(2022).

Weiguang Ding. Draw Convnet. https://github.com/gw
ding/draw_convnet. 2018.

Finale Doshi-Velez and Been Kim. “Towards a rigor-
ous science of interpretable machine learning.” In: arXiv
preprint arXiv:1702.08608 (2017).

Nelson Elhage et al. “A Mathematical Framework for

Transformer Circuits.” In: Transformer Circuits Thread (2021).

URL: https://transformer-circuits.pub/2021/framew
ork/index.html.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. “Visualizing higher-layer features of a
deep network.” In: University of Montreal 1341.3 (2009),

p- 1.

Ruth C Fong and Andrea Vedaldi. “Interpretable expla-
nations of black boxes by meaningful perturbation.” In:
Proceedings of the IEEE international conference on computer
vision. 2017, pp. 3429—3437.

Maximilian Forster, Mathias Klier, Kilian Kluge, and
Irina Sigler. “Evaluating explainable Artifical intelligence
— What users really appreciate.” In: Proceedings of the Eu-
ropean Conference on Information Systems (2020).

Jules Frangoise, Baptiste Caramiaux, and Téo Sanchez.
“Marcelle: Composing interactive machine learning work-
flows and interfaces.” In: The 34th Annual ACM Sympo-
sium on User Interface Software and Technology. 2021, pp. 39—
53

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jen-
nifer Wortman Vaughan, Hanna Wallach, Hal Daumé lii,
and Kate Crawford. “Datasheets for datasets.” In: Com-
munications of the ACM 64.12 (2021), pp. 86—92.

Michael Gleicher, Aditya Barve, Xinyi Yu, and Florian
Heimerl. “Boxer: Interactive comparison of classifier re-
sults.” In: Computer Graphics Forum. Vol. 39. 3. Wiley On-
line Library, 2020, pp. 181-193.

David Gschwend. Netscope Quickstart. http://dgschwend
.github.io/netscope/quickstart.html. 2017.

37

https://github.com/gwding/draw_convnet
https://github.com/gwding/draw_convnet
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
http://dgschwend.github.io/netscope/quickstart.html
http://dgschwend.github.io/netscope/quickstart.html

38

BIBLIOGRAPHY

[Guo13]

[GWZ15]

[Ham+20]

[Har1s]

[Hoh+18]

[Hoh+20]

[HHN20]

[HBo7]

[HDSoz2]

[Huno?]

Philip] Guo. “Online python tutor: embeddable web-
based program visualization for cs education.” In: Pro-
ceeding of the 44th ACM technical symposium on Computer
science education. 2013, pp. 579-584.

Philip] Guo, Jeffery White, and Renan Zanelatto. “Code-
chella: Multi-user program visualizations for real-time
tutoring and collaborative learning.” In: 2015 IEEE Sym-

posium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2015, pp. 79-87.

Koichi Hamada, Fuyuki Ishikawa, Satoshi Masuda, To-
moyuki Myojin, Yasuharu Nishi, Hideto Ogawa, Takahiro
Toku, Susumu Tokumoto, Kazunori Tsuchiya, Yasuhiro
Ujita, et al. “Guidelines for Quality Assurance of Machine
Learning-based Artificial Intelligence.” In: SEKE. 2020,

PP- 335-341.
Adam W Harley. “An interactive node-link visualization

of convolutional neural networks.” In: International Sym-
posium on Visual Computing. Springer, 2015, pp. 867-877.

Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen
Horng Chau. “Visual analytics in deep learning: An in-
terrogative survey for the next frontiers.” In: IEEE trans-
actions on visualization and computer graphics 25.8 (2018),
pp- 2674-2693.

Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery,
and Kayur Patel. “Understanding and visualizing data
iteration in machine learning.” In: Proceedings of the 2020
CHI conference on human factors in computing systems. 2020,
pp. 1-13.

Sarah Holland, Ahmed Hosny, and Sarah Newman. “The
dataset nutrition label.” In: Data Protection and Privacy,
Volume 12: Data Protection and Democracy 12 (2020), p. 1.

Christopher D Hundhausen and Jonathan L Brown. “What
You See Is What You Code: A “live” algorithm develop-
ment and visualization environment for novice learners.”
In: Journal of Visual Languages & Computing 18.1 (2007),
Pp- 22747

Christopher D Hundhausen, Sarah A Douglas, and John
T Stasko. “A meta-study of algorithm visualization effec-
tiveness.” In: Journal of Visual Languages & Computing 13.3
(2002), pp. 259—290.

J. D. Hunter. “Matplotlib: A 2D graphics environment.”
In: Computing in Science & Engineering 9.3 (2007), pp. 90—
95-

[Inc21a]

[Inc21b]

[Jia+14]

[J1V19]

[JM15]

[Jup21]

[Kah+18a]

[Kah+18b]

[KSA11]

[KLA17]

[Koe+19]

[Kri+o9]

BIBLIOGRAPHY

Google Inc. Know Your Data. 2021. URL: https://knowyou
rdata.withgoogle.com/ (visited on 08/30/2021).

Streamlit Inc. Streamlit. 2021. URL: https://streamlit.i
o/ (visited on 07/29/2021).

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Kara-
yev, Jonathan Long, Ross Girshick, Sergio Guadarrama,
and Trevor Darrell. “Caffe: Convolutional architecture for
fast feature embedding.” In: Proceedings of the 22nd ACM
international conference on Multimedia. 2014, pp. 675-678.

Anna Jobin, Marcello Ienca, and Effy Vayena. “The global
landscape of Al ethics guidelines.” In: Nature Machine

Intelligence 1.9 (2019), pp- 389-399.

Michael I Jordan and Tom M Mitchell. “Machine learning:
Trends, perspectives, and prospects.” In: Science 349.6245

(2015), pp. 255—260.

Jupyter. IPyWidgets. 2021. URL: https://ipywidgets.rea
dthedocs.io/en/stable/ (visited on 08/31/2021).

Minsuk Kahng, Pierre Y. Andrews, Aditya Kalro, and
Duen Horng Polo Chau. “ActiVis: Visual exploration of
industry-scale deep neural network models.” In: IEEE
Transactions on Visualization and Computer Graphics 24 (1
2018), pp. 88-97.

Minsuk Kahng, Nikhil Thorat, Duen Horng Polo Chau,
Fernanda B Viégas, and Martin Wattenberg. “Gan lab:
Understanding complex deep generative models using
interactive visual experimentation.” In: IEEE transactions
on visualization and computer graphics 25.1 (2018), pp. 1-11.

Faiza Khan Khattak and Ansaf Salleb-Aouissi. “Quality
control of crowd labeling through expert evaluation.”
In: Proceedings of the NIPS 2nd Workshop on Computational
Social Science and the Wisdom of Crowds. Vol. 2. 2011, p. 5.

Ashish Khetan, Zachary C Lipton, and Anima Anandku-
mar. “Learning from noisy singly-labeled data.” In: arXiv
preprint arXiv:1712.04577 (2017).

Laura Koesten, Emilia Kacprzak, Jeni Tennison, and Elena
Simperl. “Collaborative practices with structured data:
Do tools support what users need?” In: Proceedings of
the 2019 CHI Conference on Human Factors in Computing
Systems. 2019, pp. 1-14.

Alex Krizhevsky et al. “Learning multiple layers of fea-
tures from tiny images.” In: (2009).

39

https://knowyourdata.withgoogle.com/
https://knowyourdata.withgoogle.com/
https://streamlit.io/
https://streamlit.io/
https://ipywidgets.readthedocs.io/en/stable/
https://ipywidgets.readthedocs.io/en/stable/

40

BIBLIOGRAPHY

[Kuz+20]

[LLC21]

[LC10]

[Lea11]

[Leni8]

[Liu+18]

[MV20]

[Mcl+18]

[Mes+22]

[Mit+19]

[MZR21]

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Ste-
fan Popov, Matteo Malloci, Alexander Kolesnikov, et al.
“The open images dataset v4.” In: International Journal of
Computer Vision 128.7 (2020), pp. 1956-1981.

Tableau Software LLC. Tableau. 2021. URL: https://www.t
ableau.com/ (visited on 07/29/2021).

Yann LeCun and Corinna Cortes. “MNIST handwritten
digit database.” In: (2010). URL: http://yann.lecun.com
/exdb/mnist/.

Matthew Lease. “On quality control and machine learn-
ing in crowdsourcing.” In: Workshops at the Twenty-Fifth
AAAI Conference on Artificial Intelligence. 2011.

Alex Lenail. NN-SVG. https://github.com/zfrenchee
/NN-SVG. 2018.

Shixia Liu, Changjian Chen, Yafeng Lu, Fangxin Ouyang,
and Bin Wang. “An interactive method to improve crowd-
sourced annotations.” In: IEEE transactions on visualization
and computer graphics 25.1 (2018), pp. 235-245.

Ri¢ards Marcinkevi¢s and Julia E Vogt. “Interpretability
and explainability: A machine learning zoo mini-tour.”
In: arXiv preprint arXiv:2012.01805 (2020).

Leland Mclnnes, John Healy, Nathaniel Saul, and Lukas
Grofiberger. “UMAP: Uniform Manifold Approximation
and Projection.” In: Journal of Open Source Software 3.29
(2018).

Christian Meske, Enrico Bunde, Johannes Schneider, and
Martin Gersch. “Explainable artificial intelligence: objec-
tives, stakeholders, and future research opportunities.”
In: Information Systems Management 39.1 (2022), pp. 53—63.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker
Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer,
Inioluwa Deborah Raji, and Timnit Gebru. “Model cards
for model reporting.” In: Proceedings of the Conference on
Fairness, Accountability, and Transparency. 2019, pp. 220—
229.

Sina Mohseni, Niloofar Zarei, and Eric D Ragan. “A mul-
tidisciplinary survey and framework for design and eval-
uation of explainable Al systems.” In: ACM Transactions
on Interactive Intelligent Systems (TiiS) 11.3-4 (2021), pp. 1—

45.

https://www.tableau.com/
https://www.tableau.com/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zfrenchee/NN-SVG
https://github.com/zfrenchee/NN-SVG

[MCB20]

[NOPF1o0]

[NQ17]

[OEC19]

[Obe+19]

[OMS17]

[Ola+18]

[Par+21]

[Pec+06]

BIBLIOGRAPHY

Christoph Molnar, Giuseppe Casalicchio, and Bernd Bis-
chl. “Interpretable machine learning-a brief history, state-
of-the-art and challenges.” In: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases.
Springer, 2020, pp. 417—431.

David F Nettleton, Albert Orriols-Puig, and Albert For-
nells. “A study of the effect of different types of noise
on the precision of supervised learning techniques.” In:
Artificial intelligence review 33.4 (2010), pp. 275-306.

Andrew P Norton and Yanjun Qi. “Adversarial-Play-
ground: A visualization suite showing how adversarial
examples fool deep learning.” In: 2017 IEEE Symposium on
Visualization for Cyber Security (VizSec). IEEE, 2017, pp. 1-
4.

OECD. Recommendation of the Council on Artificial Intel-
ligence. 2019. URL: https://legalinstruments . oecd .
org/en/instruments / OECD - LEGAL - 0449 (visited on
12/11/2020).

Ziad Obermeyer, Brian Powers, Christine Vogeli, and
Sendhil Mullainathan. “Dissecting racial bias in an al-
gorithm used to manage the health of populations.” In:

Science 366.6464 (2019), pp. 447—453.

Chris Olah, Alexander Mordvintsev, and Ludwig Schu-
bert. “Feature Visualization.” In: Distill (2017). URL: http
s://distill.pub/2017/feature-visualization.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan
Carter, Ludwig Schubert, Katherine Ye, and Alexander
Mordvintsev. “The Building Blocks of Interpretability.”
In: Distill (2018). URL: https://distill.pub/2018/build
ing-blocks.

Cheonbok Park, Soyoung Yang, Inyoup Na, Sunghyo
Chung, Sungbok Shin, Bum Chul Kwon, Deokgun Park,
and Jaegul Choo. “VATUN: Visual Analytics for Testing
and Understanding Convolutional Neural Networks.”
In: Eurographics Conference on Visualization (EuroVis)-Short
Papers. The Eurographics Association. 2021.

Mykola Pechenizkiy, Alexey Tsymbal, Seppo Puuronen,
and Oleksandr Pechenizkiy. “Class noise and supervised
learning in medical domains: The effect of feature extrac-
tion.” In: 19th IEEE symposium on computer-based medical
systems (CBMS’06). IEEE, 2006, pp. 708-713.

41

https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
https://distill.pub/2017/feature-visualization
https://distill.pub/2017/feature-visualization
https://distill.pub/2018/building-blocks
https://distill.pub/2018/building-blocks

42

BIBLIOGRAPHY

[PRS18]

[PAC18]

[Rag20]

[RDK19]

[Ras+22]

[Ras+10]

[Roe18]

[RC21]

[Rud19]

[Sar+21]

Nina Poerner, Benjamin Roth, and Hinrich Schiitze. “In-
terpretable Textual Neuron Representations for NLP.”
In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP. As-
sociation for Computational Linguistics, 2018, pp. 325—
327.

Ivens Portugal, Paulo Alencar, and Donald Cowan. “The
use of machine learning algorithms in recommender sys-
tems: A systematic review.” In: Expert Systems with Appli-
cations 97 (2018), pp. 205—227.

Prabhakar Raghavan. How Al is powering a more helpful
Google. 2020. URL: https://blog.google/products/sear
ch/search-on/ (visited on 05/24/2022).

Alvin Rajkomar, Jeffrey Dean, and Isaac Kohane. “Ma-
chine learning in medicine.” In: New England Journal of
Medicine 380.14 (2019), pp. 1347-1358.

Gabrielle Ras, Ning Xie, Marcel van Gerven, and Derek
Doran. “Explainable Deep Learning: A Field Guide for
the Uninitiated.” In: Journal of Artificial Intelligence Research
73 (2022), pp. 329-397.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Ju-
lia Hockenmaier. “Collecting image annotations using
amazon’s mechanical turk.” In: Proceedings of the NAACL
HLT 2010 workshop on creating speech and language data with
Amazon's Mechanical Turk. 2010, pp. 139—-147.

Lutz Roeder. Netron. https://github.com/lutzroeder
/Netron. 2018.

Priya Roy and Chandreyee Chowdhury. “A survey of
machine learning techniques for indoor localization and
navigation systems.” In: Journal of Intelligent & Robotic
Systems 101.3 (2021), pp. 1-34.

Cynthia Rudin. “Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable
models instead.” In: Nature Machine Intelligence 1.5 (2019),
pp. 206—-215.

Cristina L Saratxaga, Jorge Bote, Juan F Ortega-Moréan,
Artzai Picon, Elena Terradillos, Nagore Arbide del Rio,
Nagore Andraka, Estibaliz Garrote, and Olga M Conde.
“Characterization of optical coherence tomography im-
ages for colon lesion differentiation under deep learning.”
In: Applied Sciences 11.7 (2021), p. 3119.

https://blog.google/products/search/search-on/
https://blog.google/products/search/search-on/
https://github.com/lutzroeder/Netron
https://github.com/lutzroeder/Netron

[Sat+15]

[Sav22]

[She+21]

[Shnos]

[Smi+17]

[Smi+19]

[Sno18]

[SC18]

[Sto+22]

[Str+21]

[STY17]

BIBLIOGRAPHY

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and
Jeffrey Heer. “Reactive vega: A streaming dataflow archi-
tecture for declarative interactive visualization.” In: IEEE
Transactions on Visualization and Computer Graphics 22.1

(2015), pp. 659-668.

Neil Savage. “Breaking into the black box of artificial
intelligence.” In: Nature (2022).

Hong Shen, Wesley H Deng, Aditi Chattopadhyay, Zhiwei
Steven Wu, Xu Wang, and Haiyi Zhu. “Value cards: An
educational toolkit for teaching social impacts of machine
learning through deliberation.” In: Proceedings of the 2021
ACM conference on fairness, accountability, and transparency.
2021, pp. 850-861.

Ben Shneiderman. “The eyes have it: A task by data type
taxonomy for information visualizations.” In: The craft of
information visualization. Elsevier, 2003, pp. 364—371.

Daniel Smilkov, Shan Carter, D Sculley, Fernanda B Vié-
gas, and Martin Wattenberg. “Direct-manipulation visu-
alization of deep networks.” In: arXiv preprint arXiv:1708.
03788 (2017).

Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Charles
Nicholson, Nick Kreeger, Ping Yu, Shanqing Cai, Eric
Nielsen, David Soegel, Stan Bileschi, et al. “Tensorflow. js:
Machine learning for the web and beyond.” In: Proceedings
of Machine Learning and Systems 1 (2019), pp. 309—321.

Jacob Snow. “Amazon’s face recognition falsely matched
28 members of Congress with mugshots.” In: American
Civil Liberties Union 28 (2018).

Pierre Stock and Moustapha Cisse. “Convnets and im-
agenet beyond accuracy: Understanding mistakes and
uncovering biases.” In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). 2018, pp. 498-512.

Veda C. Storey, Roman Lukyanenko, Wolfgang Maass,
and Jeffrey Parsons. “Explainable AL"” In: Communications
of the ACM (2022).

Dirk Streeb, Mennatallah El-Assady, Daniel A Keim, and
Min Chen. “Why visualize? Arguments for visual sup-
port in decision making.” In: IEEE Computer Graphics and
Applications 41.2 (2021), pp. 17-22.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Ax-
iomatic attribution for deep networks.” In: International
conference on machine learning. PMLR, 2017, pp. 3319-3328.

43

44

BIBLIOGRAPHY

[Swa+20]

[Swe11]

[Ten+20]

[Uch1g]

[Usa+11]

[Van+18]

[Ver+22]

[WMR17]

[WLW20]

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith, and
Yejin Choi. “Dataset Cartography: Mapping and Diagnos-
ing Datasets with Training Dynamics.” In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Lan-
quage Processing (EMINLP). Association for Computational
Linguistics, 2020, pp. 9275-9293.

John Sweller. “Cognitive load theory.” In: Psychology of
learning and motivation. Vol. 55. Elsevier, 2011, pp. 37-76.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Boluk-
basi, Andy Coenen, Sebastian Gehrmann, Ellen Jiang,
Mahima Pushkarna, Carey Radebaugh, Emily Reif, et al.
“The Language Interpretability Tool: Extensible, Interac-
tive Visualizations and Analysis for NLP Models.” In:
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. 2020,

pp- 107-118.

Yusuke Uchida. Convnet Drawer. https://github.com/y
udu/convnet-drawer. 2019.

Yu Usami, Han-Cheol Cho, Naoaki Okazaki, and Jun’ichi
Tsujii. “Automatic acquisition of huge training data for
bio-medical named entity recognition.” In: Proceedings of
BioNLP 2011 Workshop. 2011, pp. 65-73.

Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik
Moritz, Kanit Wongsuphasawat, Arvind Satyanarayan,
Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott Sievert.
“Altair: Interactive statistical visualizations for python.”
In: Journal of Open Source Software 3 (32 2018), p. 1057.

Ina Vernikouskaya, Dagmar Bertsche, Wolfgang Rottbauer,
and Volker Rasche. “Deep learning-based framework for
motion-compensated image fusion in catheterization pro-
cedures.” In: Computerized Medical Imaging and Graphics
98 (2022), p. 102069.

Sandra Wachter, Brent Mittelstadt, and Chris Russell.
“Counterfactual explanations without opening the black
box: Automated decisions and the GDPR.” In: Harv. [L &
Tech. 31 (2017), p. 841.

Linda Wang, Zhong Qiu Lin, and Alexander Wong. “Co-
vid-net: A tailored deep convolutional neural network
design for detection of covid-19 cases from chest x-ray
images.” In: Scientific Reports 10.1 (2020), pp. 1-12.

https://github.com/yu4u/convnet-drawer
https://github.com/yu4u/convnet-drawer

[Wan+22]

[Wan+20]

[Wan+o4]

[WGY18]

[Wex+20]

[WHM19]

[Won+17]

[Wor+19]

[Xia+19]

BIBLIOGRAPHY

Qianwen Wang, Kexin Huang, Payal Chandak, Marinka
Zitnik, and Nils Gehlenborg. “Towards Usable Expla-
nations: Extending the Nested Model of Visualization
Design for User-Centric XAL” In: (2022).

Qianwen Wang, Zhenhua Xu, Zhutian Chen, Yong Wang,
Shixia Liu, and Huamin Qu. “Visual analysis of discrim-
ination in machine learning.” In: IEEE Transactions on
Visualization and Computer Graphics 277.2 (2020), pp. 1470-
1480.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. “Image quality assessment: from error visibil-
ity to structural similarity.” In: IEEE transactions on image
processing 13.4 (2004), pp. 600—-612.

Gail Weiss, Yoav Goldberg, and Eran Yahav. “On the
Practical Computational Power of Finite Precision RNNs
for Language Recognition.” In: Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). 2018, pp. 740-745.

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Mar-
tin Wattenberg, Fernanda Viegas, and Jimbo Wilson. “The
what-if tool: Interactive probing of machine learning mod-
els.” In: IEEE Transactions on Visualization and Computer
Graphics 26 (1 2020), pp. 56-65.

Benjamin Wilson, Judy Hoffman, and Jamie Morgenstern.
“Predictive inequity in object detection.” In: arXiv preprint
arXiv:1902.11097 (2019).

Kanit Wongsuphasawat, Daniel Smilkov, James Wexler,
Jimbo Wilson, Dandelion Mane, Doug Fritz, Dilip Kr-
ishnan, Fernanda B Viégas, and Martin Wattenberg. “Vi-
sualizing dataflow graphs of deep learning models in
tensorflow.” In: IEEE transactions on visualization and com-
puter graphics 24.1 (2017), pp. 1-12.

Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,
Ali Farhadi, and Roozbeh Mottaghi. “Learning to learn
how to learn: Self-adaptive visual navigation using meta-
learning.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 6750—
6759-

Shouxing Xiang, Xi Ye, Jiazhi Xia, Jing Wu, Yang Chen,
and Shixia Liu. “Interactive correction of mislabeled train-
ing data.” In: 2019 IEEE Conference on Visual Analytics
Science and Technology (VAST). 2019, pp. 57-68.

45

46

BIBLIOGRAPHY

[Yan+20]

[YLT18]

[ZF14]

[ZTF11]

[Zha+21]

[Zha+20]

Fumeng Yang, Zhuanyi Huang, Jean Scholtz, and Dustin
L Arendt. “How do visual explanations foster end users’
appropriate trust in machine learning?” In: Proceedings of
the 25th International Conference on Intelligent User Interfaces.
2020, pp. 189—201.

Anders Ynnerman, Jonas Lowgren, and Lena Tibell. “Ex-
ploranation: A new science communication paradigm.”
In: IEEE computer graphics and applications 38.3 (2018),

pp- 13—20.
Matthew D Zeiler and Rob Fergus. “Visualizing and un-

derstanding convolutional networks.” In: European confer-
ence on computer vision. Springer, 2014, pp. 818-833.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus.
“Adaptive deconvolutional networks for mid and high
level feature learning.” In: 2011 international conference on
computer vision. IEEE, 2011, pp. 2018-2025.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. “Understanding deep learning
(still) requires rethinking generalization.” In: Communica-
tions of the ACM 64.3 (2021), pp. 107-115.

J] M Zhang, M Harman, L Ma, and Y Liu. “Machine
learning testing: Survey, landscapes and horizons.” In:
IEEE Transactions on Software Engineering (2020).

Part II

PUBLICATIONS

CLASSIFIER-GUIDED VISUAL CORRECTION OF
NOISY LABELS FOR IMAGE CLASSIFICATION
TASKS

Alex Bauerle, Heiko Neumann, and Timo Ropinski. “Classifier-Guided
Visual Correction of Noisy Labels for Image Classification Tasks.” In:
Computer Graphics Forum 39.3 (2020), pp. 195205

This work is published under the terms of the Creative Commons
Attribution 4.0 License (CC BY 4.0), https://creativecommons.org/
licenses/by/4.0/

49

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Eurographics Conference on Visualization (EuroVis) 2020
M. Gleicher, T. Landesberger von Antburg, and I. Viola

Volume 39 (2020), Number 3

(Guest Editors)
Classifier-Guided Visual Correction
of Noisy Labels for Image Classification Tasks
A. Biuerle &, H. Neumann “*, and T. Ropinski
All authors are with Ulm University. E-mail: alex.baeuerlelheiko.neumannltimo.ropinski @uni-ulm.de.
Abstract

Training data plays an essential role in modern applications of machine learning. However, gathering labeled training data is
time-consuming. Therefore, labeling is often outsourced to less experienced users, or completely automated. This can introduce
errors, which compromise valuable training data, and lead to suboptimal training results. We thus propose a novel approach
that uses the power of pretrained classifiers to visually guide users to noisy labels, and let them interactively check error
candidates, to iteratively improve the training data set. To systematically investigate training data, we propose a categorization
of labeling errors into three different types, based on an analysis of potential pitfalls in label acquisition processes. For each of
these types, we present approaches to detect, reason about, and resolve error candidates, as we propose measures and visual
guidance techniques to support machine learning users. Our approach has been used to spot errors in well-known machine
learning benchmark data sets, and we tested its usability during a user evaluation. While initially developed for images, the
techniques presented in this paper are independent of the classification algorithm, and can also be extended to many other

types of training data.

CCS Concepts

e Information systems — Expert systems, ® Human-centered computing — User centered design, Information visualization;

1. Introduction

While most of the latest breakthroughs in deep learning have
been achieved by means of supervised algorithms, these algorithms
have one essential limitation: they require large amounts of la-
beled training data. When learning image classification tasks, this
means that a large set of correctly labeled images needs to be
available [NOPF10, PTPPO6]. Since the labeling process is time-
consuming and labor-intensive, acquiring labeled training data is,
however, a cuambersome process. To speed this process up, label-
ing is often outsourced to less experienced annotators or crowd
workers, for instance via Amazon’s Mechanical Turk [KLA17,
RYHHI10]. In the context of deep learning, crowd workers are hu-
man labor, getting paid for labeling large data sets. Sometimes,
even automatic label assignment tools are used [UCOT11]. Unfor-
tunately, such a label acquisition process usually leads to noisy la-
bels, i.e., a training data set which contains many wrongly assigned
labels. This can compromise training results [ZBH*16]. Thus, to be
able to benefit from these approaches for training data acquisition,
dedicated quality control mechanisms must be in place.

To address the problem of noisy labels, we propose a classifier-
guided visual correction approach, which combines automatic error
detection with interactive visual error correction (see Figure 1). To
enable the automatic detection, we have systematically categorized

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

error types, that can be potentially present in noisy label data sets.
Our categorization led to three such error types: Class Interpreta-
tion Errors, Instance Interpretation Errors, and Similarity Errors.
Tailored towards these error types, we further introduce detection
measures, which are based on the classifier’s response. Therefore,
we first train with the potentially noisy labels, and subsequently
classify all training and validation images with the trained classi-
fier. The classifier’s response can then be analyzed using our error
detection measures to guide the user to potential errors. These po-
tential errors are visualized in a way that supports an interactive
visual correction. To visually guide the user during the correction,
we propose to employ linked list visualizations with importance
sorting. By using our approach, the number of required inspections
is bound by — and usually much lower than — the classification er-
ror, i.e., for a classifier that reaches an accuracy of 92%, only 8%
of the data has to be reviewed at maximum. While this is the up-
per bound for investigated training samples per iteration, all sam-
ples that have already been inspected can additionally be ignored
in the error detection process in future iterations. This means that
for each subsequent iteration of data-cleanup, only those samples
where the classifier disagrees with the label and that have not been
already revisited need to be reviewed. Without our classifier-guided
approach, instead, an inspection of the entire labeled data set would
be necessary.

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

Labeled
Data

K

Training

Classification

Automatic Error
Detection

Visual Error
Correction

Productive
Use

Figure 1: We propose a classifier-guided Automatic Error Detec-
tion for noisy labels, to visually guide the user to erroneous labels,
which can then be inspected and corrected during the proposed Vi-
sual Error Correction. The two proposed components seamlessly
integrate with standard machine learning workflows, as they oper-
ate downstream from Training and Classification. After a visual
inspection, the classifier can be deployed for Productive Use, or
trained again to be iteratively improved through the proposed pro-
cess.

As illustrated in Figure 1, the proposed approach can be used it-
eratively to further improve classification accuracy, whereas users
have to inspect fewer images for each subsequent iteration, as al-
ready inspected images do not require further consideration. While
the contributions made in this paper address automatic error de-
tection and visual error correction, no modifications are necessary
for collecting labels, or training and testing the classifier, as our
approach is to correct training data independent of the labeling or
training process, allowing data experts to review data sets that have
been fully labeled. This is in contrast to active learning, which mod-
ifies the label acquisition process during training [SOS92, Set10],
as well as more recent fully automatic techniques, which modify
the training process, and also reduce the amount of training data by
sorting out noisy labels [TIYA18,LHZY 18, HQJZ19]. We propose
an error correction approach that is based solely on classification
results of the trained model, and integrates seamlessly with modern
deep learning workflows without reducing the size of the training
data set.

To this end, we make the following contributions throughout this
paper:

e Categorization of label error types potentially occurring in clas-
sification training data.

e Measures to identify error candidates by means of classifier re-
sponse analysis.

e Interactive visual error guidance and correction by means of
classifier result measure visualization.

We have realized these contributions within an interactive visual-
ization system, with which we were able to identify errors in stan-
dard machine learning benchmark data sets, such as MNIST and
CIFARI1O (see Figure 2). We have further evaluated this system,
whereby our findings indicate, that it enables users to intuitively
clean noisy label data in order to achieve higher classification ac-
curacies.

2. Related Work

Work on handling noisy labels for datasets can be delineated into
two main categories. On one side, some approaches aim at inspect-
ing datasets, often through visualization. On the other, there are
training setups that aim at providing robust classifiers that cope
with noisy labels. The following will provide an overview of both
those lines of research.

Data labeling. One area of deep learning where data labeling is a
central aspect is active learning [Set10]. Here, candidates for label-
ing assignments are selected, often through a query-by-committee
strategy, where the output of several classifiers is used to inform
candidate selection [SOS92]. The line of work by Bernard et.
al. [BHZ*17,BZL" 18, BHR* 19] investigates how label acquisition
in active learning scenarios can be improved. They also employ
the classifier directly to suggest new items to be labeled and use
dimensionality reduction techniques to visualize these proposed
items and their distribution. What separates active learning from
our work is, that active learning does not aim at improving noisy
data sets, but rather works towards improving the labeling process
itself. Thus, active learning is placed before label acquisition has
been performed, while our approach is designed to work with read-
ily labeled data sets.

There also exist numerous techniques to ensure a better qual-
ity of crowdsourced training data while labels are being gener-
ated [HKBE12,CAK17,Set11]. They use multiple workers [KH16],
provide monetary benefits for good work and specialized task
framing [RKK*11], or select workers with predefined require-
ments [MHG15]. All of these approaches are focused on quality
assurance while labels are acquired. Approaches to examining data
quality after labeling through crowd services are analyzing how
the worker interacted with the system [RK12, LCL*19], or hav-
ing workers review the work of other workers [HSC*13]. A work

Label: Cat

Label: 5

Class Interpretation
Instance Interpretation

>
=

2
s
£
%]

Figure 2: Examples of errors we discovered by applying our tech-
niques to widely used machine learning benchmark data sets. On
the left, one can see possible Class Interpretation Errors. While the
top one was labeled as one, the bottom one was labeled to be a
seven. The frog in the center is labeled as a cat and the three as
a five, thus, single instances were clearly misinterpreted. On the
right, one can see almost equal images. One might question if they
should both be in the data set. (Original resolution of 32 by 32 for
Cifar10/animals and 28 by 28 for MNIST/digits)

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

published by Chang et. al. combines multiple of these aspects to
ensure data quality by grouping multiple workers and letting them
interactively reason about label decisions [CAK17]. However, they
do not incorporate the classifier feedback in their visualizations,
which is the building block of our guidance system and can help re-
duce the samples to be revisited. Additionally, their techniques are
only applicable if all annotations are present and can be assigned
to individual workers. Yet, correcting labels for readily provided
data sets where original labelers are not accessible anymore can be
valuable to support already processed data sets. Current tools are
targeted more towards analyzing worker performance than correct-
ing already labeled data sets. However, it can often be of great value
for domain experts to be able to validate and correct their training
data themselves as sometimes the data is specific and cannot be
perfectly labeled by laymen. Additionally, for all of these data im-
provement methods in the context of crowdsourcing, one needs to
either hire more crowdworkers, refine the requirements or conduct
a separate, second task to verify the generated labels, which comes
with a greater investment of money and time during label acquisi-
tion [SPIO8, IPSW14], and sometimes even makes crowdsourcing
more expensive than conventional approaches [KLA17]. In these
scenarios, it is therefore helpful if domain experts can review and
resolve label errors quickly. Our approach is thus focused on cor-
recting erroneous labels.

Visualization has been used for data cleaning in several publica-
tions, which shows how effective visualization can be when data is
to be cleaned. Kandel et. al. worked on improving data by visually
exploring data sets and directly manipulating them whenever a user
spots a problem in the data [KPHH11, KPP*12]. Gschwandtner at.
al. [GAM™14] as well as Arbesser et. al. [ASMP16] use visualiza-
tion to clean up time-oriented data. Wilkinson developed measures
and visualizations to detect and inspect outliers in data sets [Wil17].
However, these and related [PNMK 16, WGS™*13] tools are not tai-
lored towards use with machine learning data sets, which often ex-
ceed the amount of data used in these contexts, contain labels that
are to be corrected instead of direct data properties and offer addi-
tional guidance usable for visualization designs, such as classifica-
tion results.

In a publication by Xiang et. al., visualization is directly used to
improve the quality of neural network training data sets [XYX"19].
They use a projection of the whole high dimensional data set to de-
fine trusted items, which are then propagated to more items using an
approach by Zhang et. al. [ZZW18]. However, while this approach
combines human interaction with network-based label correction,
they do not use the network predictions as guidance to potential
errors. Similarly, Alsallakh et. al. [AJY* 18] developed a visualiza-
tion method to analyze class hierarchies in training scenarios. The
purpose of this approach is to identify class hierarchies that are of-
ten confused by the classifier, and upon this knowledge, improve
the classifier or label definitions. As a side-product, they were also
able to find labeling errors in the data. However, their visualization
design and especially the lack of tools to directly investigate and
correct mislabeled samples shows, that this is not the main goal of
their application.

Robust training. One way to approach noisy data sets is to train
a classifier that is robust against such noisy labels. Here, some ap-

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

proaches rely on modifications of said classifier to introduce fea-
tures that can filter noisy labels [TIYA18, ZS18, HQJZ19]. This
introduces additional overhead and does not improve the general
label quality so that the data set remains erroneous. Others rely
on additional, clean data to filter for noisy samples [PRKM*17,
HMWGI18]. These methods remove potentially noisy labels from
the data set entirely [NNL*19], or reduce the importance of poten-
tially false labels for training [RLA*14,JZL*17,RZYU18], which
might reduce diversity in the data set. Such approaches can help cir-
cumvent some of the downsides of data sets that contain labeling
errors, however, they do not tackle the underlying problem. Clean-
ing up data sets is still fundamental, as this is the only way a data
set can be reliably reused, shared and published. At the same time,
these approaches effectively make the data set smaller, which is not
desirable. Some of these approaches also require using adjusted
classifiers, which is neither desirable nor easy to use, especially by
data-experts who are less experienced in ML.

Other authors introduce additional label cleaning networks to
be trained to remove or relabel potentially compromised sam-
ples [VAC*17, LHZY18]. Han et. al. even propose to use a self
learning approach to clean up noisy labels using extracted features
from the data points [HLW19], however, all these automatic ap-
proaches do not guarantee correct labels. They either reduce the
data set size, require modified training with another classifier, or
both. Additionally, they do not allow data-experts to verify their
data sets.

‘We propose an approach to improve the training data set without
having to look at every individual sample by using the classifier as a
guide to mislabeled samples. Our user-centered approach does not
only focus on the final classifier performance, but is also targeted
at cleaning up the training data at the same time, as it does not
simply reweight or remove training samples. As this permanently
corrects training data, it additionally makes the data reusable, pub-
lishable, and shareable. Also, the approach we propose can directly
be integrated into any training process, as it does not require any
manipulation of the classifier or additional data. Users simply use
their trained classifier for permanent data-cleanup. It additionally
provides insights about the training data, e.g. which classes are typ-
ically confused, biased, or seen similar.

3. Automatic Error Detection

To be able to tailor the visual user guidance towards relevant errors
in labeled data sets, a characterization is required to differentiate
error types potentially occurring in such labeling scenarios. Based
on a systematic analysis of the image labeling process, we have
identified three such error types.

Whenever annotators assign an incorrect label to an image, this
can stem from two fundamentally different problems. Either, they
just mislabel the one image at hand, while they have in general un-
derstood the task; or they have a wrong mental image of a class, and
thus assign incorrect labels to all data points of that class. While
these are problems that occur during the labeling of data points,
another source for corrupted data sets may already be the data ac-
quisition process. Similar or equal data points are sometimes added
to the data set more than once, which can shift the data-distribution

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

away from real-world scenarios. While the aforementioned error-
types mostly stem from human errors, the addition of highly similar
data points can be a problem especially when automatically collect-
ing data, e.g. from online sources. To summarize, noise in training
data can be introduced when:

1. A labeler confuses two classes (Class Interpretation Error)

2. A labeler mislabels one data point (Instance Interpretation Er-
ror)

3. Data points get added to the data set multiple times (Similarity
Error)

These error types all introduce unique challenges for how to re-
solve them. Nevertheless, this categorization also enables the in-
vention of novel approaches, to guide the user to potential instances
of these errors. Therefore, to suggest further inspection of labeled
data points, we propose the following measures for the three error

types:

1. Class Interpretation Error Score (Equation (1))
2. Instance Interpretation Error Score (Equation (2))
3. Similarity Error Score (Equation (3))

For the first two scores, we use the classification results in com-
bination with the labels, which might be incorrect, as the basis for
computing them. The Class Interpretation Error Score is computed
for each label/classification (Ibl/cls) subset of the data, whereas the
Instance Interpretation Error Score is computed on individual in-
stances. The Similarity Error Score is computed for each instance
pair with the same classification. We assume that, although the la-
beled data may contain errors, the convolutional neural network
(CNN) is still able to differentiate between different classes, such
that in general incorrectly labeled data points get classified into
their original class. This assumption has been tested on an inten-
tionally corrupted data set, which is described in Section 5. Since
this makes the classification result and the original label differ,
these data points can be detected by looking at misclassifications
in the data set. The similarity error score instead, can be calculated
by exploiting similarity measures between training samples. As ev-
ery part of the data-split can contain errors, we classify all samples
in the data set once after the network has been trained. This in-
cludes train, test, and validation data, which can then subsequently
be corrected. In the following, we introduce these three scores and
their computation in detail.

3.1. Class Interpretation Errors

Class Interpretation Errors are introduced when data points from
class a were assumed to be of class b by one, or few, of the label-
ers. This error type is conceptual, and leads to multiple or all labels
assigned by one, or a few, labelers and belonging to class a ending
up with the wrong label b (e.g., labelers considering gooses to be
ducks throughout the entire data set). However, as long as the ma-
jority of data points are correctly labeled, our presented approach
is able to guide to these errors, as the classifier will still be able
to correctly classify most of the data points with incorrect labels,
see Section 5. Fortunately, the fact that multiple data points are la-
beled incorrectly makes Class Interpretation Errors easy to detect.
We make use of the amount of resulting misclassifications to find

1

Figure 3: Images from the original MNIST data set (original res-
olution 28 by 28). The top row shows images labeled as one. The
bottom row contains images labeled as seven. Here, Class Interpre-
tation Errors might occur, since those digits are written differently
in the US and Europe.

candidates for Class Interpretation Errors. Thus, we analyze 1bl/cls
combinations by the amount of missclassifications in them as:

CIES,; = |{x | x € D,argmax(cls(x)) = y,1bl(x) = §}| ¢))

Which means that the Class Interpretation Error Score CIES
given a prediction class y and a ground truth class y is defined as
the cardinality of the subset of data points x in the data set D for
which the classification result c/s(x) equals y and the label [bi(x)
equals §. Thus, this measure is designed to analyze entire 1bl/cls
subsets of the data. An interesting occurrence of this type of er-
ror in the widely used MNIST data set is the interpretation of the
North-American and European way of writing the digits *7’ and
’1’, as shown in Figure 3.

3.2. Instance Interpretation Errors

When single items in the data set get labeled incorrectly, the situa-
tion is more difficult, as these errors cannot be spotted by analyz-
ing the ratio of misclassifications of one Ibl/cls pair. At the same
time, however, they have less influence on classification accuracy
as compared to Class Interpretation Errors. To provide means to
identify and remove Instance Interpretation Errors, we employ the
classification confidence as an indication for labeling errors. This
works well for all probabilistic models, such as neural networks,
where prediction probabilities are an implicit output. When data
points are misclassified confidently, they might as well be incor-
rectly labeled. This can be used to guide the user to these samples
in the data set. To enhance this guidance, we go one step further and
analyze the relation of the classification confidence and the classifi-
cation probability assigned to the ground-truth label of a data point.
On these means, Alsallakh et. al [AJY* 18] state:

[...] detecting mislabeled samples such as an image of a lion la-
beled as a monkey. We found such cases by inspecting misclassified
samples having high prediction probability and low probability as-
signed to the ground-truth.

We, therefore, propose the following measure to guide users to
these error types:

max(cls(x)) + (1 —cls(x)y)
2

HES, = @

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

Here, we calculate the Instance Interpretation Error Score I/ES
for a data point x as the normalized relation between the class that
the classifier assigned the highest classification probability to, and
the probability the classifier assigned to the ground-truth label ¥.
Thus, this score provides guidance on an individual instance level.
This score is used as an indicator for how certain the classifier is
wrt. the misclassification of a data point, and can be used to recog-
nize potential labeling errors. Applying this approach to the widely
used Cifarl0 as well as the MNIST data set, revealed previously
unknown labeling errors, which we discuss in Section 5.

3.3. Similarity Errors

When data points occur more than once in the labeled data set,
this can lead to an unintended shift away from the real-world data
distribution. Such errors can be introduced when data points are
taken from online sources or when an overview of the data set is
not always present during data acquisition. It is important to dif-
ferentiate between intentionally augmented data and data points
that might over-represent certain features during training, as data-
augmentation can lead to better training results. However, having
multiple similar data points unintentionally in the labeled data set
can compromise the training results in multiple ways. When they
are in the training set, a higher priority is assigned to this repre-
sentation, which can lead to bias, where some features are consid-
ered more important than other features. This is a problem when
this over-representation is not expected in the productive use of the
classifier. When, in contrast, several instances are in the validation
data set, validation accuracy has a higher variation depending on
the correctness of the classification of these data points, which in
turn might compromise the performance measure of the classifier.
If similar data points exist across training and validation data sets,
validation is performed on data points that the classifier has been
trained on, which can also compromise validation results, and at
the same time introduce bias to the training data. Gladly, guiding
users to similar data points is also possible, as similarity measures
can be computed for each pair of elements in the data set that are
assigned the same classification result:

SESy, x, = sim(x1,x2), forxy,xp €M

M :={x1,xp € D | x| # xp,argmax(cls(xy)) = argmax(cls(xy))}
3)

The Similarity Error Score SES for a pair of data points xj,x,
can be obtained using similarity measures, which exist for many
types of data. The SES is calculated for all pairs of data points in
the data set D that were classified into the same class, whereas the
sim function represents a similarity measure for two data points.
For images, this function could be the Structural Similarity Index
Measure (SSIM) [WBSS04]. While proposing candidates with this
measure is not complex, Similarity Errors require the most expe-
rience of all error types to be resolved, as highly similar images
are not always a problem for training a classifier. They are only
harmful if either, they do not represent the real-world distribution,
or, if they originate from both the training and validation data sets
because then, validation does not test generalizability. This makes

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

expert revision, which our approach is targeted towards, even more
important.

By calculating the measures presented in this section, we are
able to analyze the training data set and extract potential labeling
errors using only the trained classifier. In our visual error correc-
tion approach, we make use of the suggested error characterization
and treat these three error types differently, both, by calculating
specialized error measures, and employing tailored visual guidance
systems.

3.4. Workflow Integration

As we exploit a pre-trained classifier for error detection, a few con-
siderations need to be made in order to integrate our approach into
a standard classification workflow. Before analyzing the data set,
the classifier needs to be trained. Here the classifier and the train-
ing process do not need to be altered at all. The user can then rein-
spect misclassified samples based on our proposed visual guidance.
Additionally, if the number of data points to be reinspected is too
small, experienced users can employ strict regularization or early
stopping if they intend to control the number of training samples
to reinspect, as the classification accuracy directly influences this
number. To be able to use the classification results as guidance to-
wards possible errors, we assume that the network still has enough
correctly labeled data to learn from, and guide the user towards in-
correct labels. While this assumption is likely to be true for most
scenarios, if the data set is too small or contains too much noise, our
approach will not function anymore as it relies on the classification
results of the neural network.

To then get an idea about which items should be inspected again,
all samples in the data set are classified once using the trained clas-
sifier. In a typical neural network setting, this would include train-
ing, test, and validation data, as all of them can contain errors. It is
important to note that no evaluation of the model or further training
is done at this point, so the data-split or training setup is not cor-
rupted in any way. This way, each data point is assigned a probabil-
ity distribution over all classes. We then present only misclassified
samples through our visual guidance approach which we introduce
in the next section. This way, the user has to look at far fewer items
than if they would have to inspect all data points again. Our evalua-
tion shows that this approach works well even when a large number
of incorrect labels are present (see Section 5).

4. Visual Error Correction

While obtaining potential error candidates, as described above, is
essential for improving training data sets, only through visual guid-
ance users can detect potential errors, and reason about them. Our
visual guidance approaches help to do this for all three error types
that typically occur in labeling processes. Once errors have been
reasoned about, they can directly be resolved. Again, the visual cor-
rection of data points, which involves the user tasks of detecting,
reasoning about, and resolving potential errors, should be in line
with the error types we propose. This interplay of user tasks and
error types is shown in Table 1.

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

Table 1: User tasks involved when improving training data. The user has to first, detect potential errors, then try to reason them, before
he/she can resolve them. The table shows how these tasks are completed for the three identified error types.

Class Interpretation Error Instance Interpretation Error Similarity Error
Detect Many samples misclassified from a to b Samples confidently misclassified Similar/ identical samples
Reason Error or bad classifier performance? Error or bad classifier performance? Error or intentional?
Resolve Reassign multiple labels Reassign individual label Remove item

4.1. Error Detection

Through the error measures we propose, it is possible to support
users through visual guidance to the most critical items in the data
set. For all three error types, users should have indications of which
data points to review. In Section 3, we showed how candidates for
these error types can be extracted from the data set based on clas-
sification results. Thus, the user should be guided to Ibl/cls pairs
that contain a large number of misclassifications for Class Inter-
pretation Errors. For Instance Interpretation Errors, they should see
which samples have been most confidently misclassified. Addition-
ally, users should be given an indication of where to find very sim-
ilar images to be able to resolve Similarity Errors. In the following,
we present visual guidelines that support all of these requirements.
To give users an overview of those measures, we propose a visual-
ization of the data set that contains information about the amount,
probability distribution, and similarity score for each Ibl/cls pair. In
line with our approach of guiding the user only to samples that the
network misclassified, and thus might be labeled incorrectly, we
only highlight misclassifications in this view, while correct classi-
fications are depicted in the leftmost column. The resulting visual-
ization can be seen in Figure 4.

El
3

Compurer

N
0|

B & A

ENENENEEY
o o ol lS ol
GENEOOGHS
eSS EHE

- -

(o [e fa o i

N
|
&
@

Figure 4: The list view of classifications shows problematic Ibl/cls
combinations at a glance. The number of misclassifications for
each cell is encoded in the blue background. The red horizontal
bars in each cell show, how confidently the images have been mis-
classified as computed through Equation (2). Visual separation of
rows makes clear, that this list should be read from left to right. On
the left, one can see cells for correctly classified samples.

We propose a visualization approach that employs a modified
version of confusion matrices. To search for possible Class Inter-
pretation Errors, users need to be able to investigate 1bl/cls com-
binations containing many misclassifications. We support this re-
quirement by sorting matrix cells based on the number of data
points they contain, while the distribution of Instance Interpretation
Scores is displayed within each cell. We first sort by the number
of misclassifications across different labels (rows), before sorting
classification results within each label (columns). This places the
most critical classes at the top of this matrix. Additionally, we omit
cells that do not contain any items, which removes unnecessary
clutter and makes the visualization more sparse. In our implemen-
tation, we also highlight 1bl/cls combinations with many misclas-
sifications in blue, where the saturation of this color depends on
the number of samples. This guides the visual attention of users
directly to these, most critical 1bl/cls combinations.

To also embed the IIES-distribution of those misclassifications
in this overview, which is helpful for spotting potential Instance In-
terpretation Errors, we propose to show this distribution using hor-
izontal bar-charts within each list item. Here, the y-position of the
bars represents the IIES-distribution scaled from 1.0/num_classes
(lowest bar) to 1.0 (top bar) while the length of the bars signals the
number of items in an IIES-range.

The third user guidance system, which shows if similar items
are present in a 1bl/cls combination, is indicated by a duplicate icon
within cells that contain highly similar data points. With these vi-
sual indicators across the entire data set, this view serves as an
overview that guides users to all three error types we defined in Sec-
tion 3.

Traditional approaches, such as confusion matrices [AJY*18,
KHO09] or the confusion wheel [AHH™14], which are commonly
used to provide such an overview have major limitations for the task
of spotting potential errors in the labeled data set. Confusion ma-
trices always require understanding and combining both, the label
and the classification axis, which proved to be too complex for de-
picting the source and destination for misclassifications when pre-
sented to domain experts [RAL*17]. At the same time, most of the
confusion wheels screen real estate is taken up by class overviews
and it provides no clear entry point. This renders both of these vi-
sual approaches suboptimal for guiding users to potential errors in
the data set, which our approach is explicitly designed for.

4.2. Error Reasoning

When the user decides to inspect a potentially problematic 1bl/cls
combination, they naturally want to inspect individual data points
and the distribution of data points in this subset of the data. This

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

way, they can reason about the potential errors to decide if they are
problematic, and should be acted upon. To inspect one such 1bl/cls
combination in detail, users select one of the items in our overview
visualization.

Reasoning about potential errors includes comparing samples,
and extracting outliers as well as investigating similar samples for
a Ibl/cls combination. Thus, we propose to guide the user by visu-
alizing similarity-based embeddings of the selected Ibl/cls combi-
nation. Therefore, to inspect Instance Interpretation Errors, as well
as Class Interpretation Errors, dimensionality reduction techniques
that preserve high-dimensional relations are helpful. If many sim-
ilar items have been misclassified, users can quickly reason about
potential Class Interpretation Errors as these items, which differ
from plain misclassifications, will cluster when dimensionality re-
duction is applied. On the other hand, outliers can be an indica-
tion for Instance Interpretation Errors, as can be seen in Figure 5.
When dealing with images, we propose to use UMAP [MHM18] to
show clusters of data points, as well as outliers in this 1bl/cls com-
bination, which can be seen in Figure 6. Here, either direct image
pixels can be used as projection features. An even more sophisti-
cated approach, which we used to generate these projections is, to
use saliency visualizations of those images as a projection basis to
also incorporate what the model looks for in these images. While
labeling errors will not always be projected as outliers, users can
iteratively remove items from the visualizations by confirming or
changing their labels, which eventually reveals label errors. How-
ever, if there are few data points, or the user wishes to scan the data
sequentially, there is also the option to switch to a grid-based view
on the items. To also support the inspection of Similarity Errors,
the most similar images per /c combination should additionally be
presented to the user. In our implementation, those data points are
shown below the projection-view.

Apart from showing data points with dimensionality reduction
or sorted by similarity, their properties should also be inspectable
in detail individually. This can further help to decide upon whether
a proposed error candidate was indeed labeled incorrectly. Thus,
in our proposed visualization approach, the final reasoning step on
an individual data point level should be performed by selecting in-
dividual samples to view them in detail. Additionally, for selected
items, we show the probability distribution that stems from the clas-
sifier response to provide the user with another tool to reason about
a potential labeling error. In our implementation, enlarged images
and classifier responses are shown on the right of the projection
view (see Figure 5).

While each of these visual guides is targeted towards satisfying
a specific user-need, in combination, they provide the visual tools
necessary to reason about the three error types we propose.

4.3. Error Resolving

The final step in our proposed iterative data-correction approach is
resolving potential errors that have been found within the data set.
Once error candidates have been reasoned about, it is important to
directly be able to resolve them. This can mean assigning new la-
bels, but also confirming labels that are correct to remove items
from the error correction process. For resolving Similarity Errors,

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

data points should also be permanently removable from the data
set. To enable a correction, confirmation, and removal of labels for
data points, we show actionable buttons on the lower right of the
GUI (see Figure 6). Whenever data points are selected and subse-
quently resolved using these buttons, all visualizations are updated
as resolved data points are removed from all guidance measure cal-
culations and visualizations. The effect of this can be seen in Fig-
ure 5. Thus, by resolving error candidates, users can interactively
process the visualizations and work their way through the data set
until all error candidates are resolved, and thus removed from the
guidance approach.

After one iteration of data-correction has been completed, users
can reiterate and restart the process by training a new classifier on
the partially cleaned data set (see Figure 1). With training a new
classifier, proposed error candidates may change, and new error
candidates can be inspected. For subsequent iterations, our pro-
posed measure calculation and user guidance can thus be kept as
is, with the exception that all previously relabeled, removed, or
confirmed data points are not included in the guidance system any-
more, as they have already been resolved.

In our approach, users are guided to confident misclassifica-
tions, large quantities of misclassifications, and almost equal im-
ages through a data set overview, which helps to investigate poten-
tial errors. To reason about error candidates, clustering mechanisms
and outlier visualization are of great help. It is also essential to di-
rectly be able to act upon inspected items to remove them from the
process. Through the translation of the three user tasks of detecting,
reasoning about, and resolving potential labeling errors into our vi-
sualization guidelines, this approach can be implemented to fit any
classifier as well as data type to be cleaned. Thus, our approach en-
ables a user-centered data cleaning that utilizes the trained classifier
to propose error candidates. The proposed visual design directly
follows the principles of our approach to resolve the error types
we introduced in Section 3, and obeys to the user tasks we defined
for the visual correction process. Our implementation along with
the user-study which we present in Section 5 shows, that our con-
cepts are applicable to network-supported data-cleanup, and could
be adopted in many application scenarios.

5. Evaluation

To test the proposed approach, we implemented a web-based ap-
plication that realizes the proposed visualizations, and focuses on
image data in combination with CNNs as classifiers. The general
idea of using the classifier as a guide to potential labeling errors
is, however, not limited to such data or classification algorithms.
The following will present both, the application of our approach to
renowned data sets, as well as a user study that tests the applicabil-
ity of our approach.

5.1. Analyzing Benchmark Data Sets

Using our approach, we were able to spot errors in well-known
machine-learning benchmark data sets. Here, we analyzed both, the
Cifar10 [KH09], and MNIST [LC10] data sets.

MNIST. The MNIST data set [LC10] is one of the most popular
machine learning benchmark data sets. It contains greyscale im-

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

’%E L&
& ﬁ;ﬁ'

& &

Figure 5: UMAP [MHM 18] projection of the label cat and classification frog. One can see that dimensionality reduction helps to spot
outliers in these Ibl/cls combinations. The red arrows were added to indicate the position of the frog image. The three subsequent steps
during interactive isolation of the frog wrongly labeled as cat show how after removing some data points, reprojecting the remaining data
helps to isolate outliers. By iteratively removing outliers and through the nondeterministic nature of UMAP, the frog is embedded further
away from the cats. (Images are from Cifarl0, original resolution 32 by 32)

ages of handwritten digits from zero to nine with a size of 28 by
28 pixels. We used a simple architecture for training a CNN on that
data set. It consisted of two convolutional layers, each followed by
a max-pooling layer. For obtaining classification results on top of
this embedding, one dense layer was used, followed by a dropout
layer and the final softmax layer. Our classifier reached an accuracy
of 99.3 percent. To review the data, we then inspected label clas-
sification pairs marked as suspicious in the overview visualization.
Since only 0.7 percent of the data set was misclassified, our visual-

Human: deer Computer: airplane

Lt

ssssss

g

.7 BR HE DI =X EE =5 ah EE By TT BE 7T @8 58

Figure 6: After gaining an overview of the classification results,
the user can inspect the content of individual cells to analyze clas-
sification results in detail. Images are embedded by applying pro-
Jection, e.g. UMAP. Filtering can be done by selecting IIES ranges.
Once one or more images have been selected, the according proba-
bility distribution is visualized. Using the buttons on the right, users
can change or confirm the label of the selected images. (Data set:
Cifarl0, resolution of images 32 by 32)

ization allowed us to only look at these images as potential errors.
Thus, instead of looking at all 70,000 images in a file explorer, we
had to look at only 490 misclassified images through a guided pro-
cess.

When looking at the classes seven and one, some samples are al-
most impossible to distinguish while being from different classes.
This can be seen in Figure 3. Here, different cultural interpretations
of said classes might lead to Class Interpretation Errors. We found
that the US-American versus European writing style of these digits
might introduce problems to this data set. We also discovered in-
dividual instances that are mislabeled in the MNIST data set. Fig-
ure 2 shows a data point that clearly shows a three, but was labeled
as a five. More of such examples can be found in our supplementary
material.

Cifar10. The Cifar10 data set [KHO09] consists of 32 by 32 pixel
colored images from ten different classes. The model used for train-
ing on this data set was built by two blocks, each containing two
convolutional layers followed by a pooling and a dropout layer.
This was then followed up by two dense layers each also preceding
a dropout layer, before the final softmax classification layer was
added. With this intentionally simplistic network, we reached an
accuracy of 77.13 percent, which is representative of real-world
training scenarios on new, domain-specific data sets. Even with the
classification comparably low accuracy we reached, we only had to
look at 22.87 percent of the data.

As can be seen in Figure 5, for Cifar10, we were able to spot an
image that was incorrectly labeled as cat, while showing a frog.
When performing an in-detail inspection of the Ibl/cls combination
of the label cat and the classification frog, we found this incorrectly
labeled image by iteratively removing outliers from the embedding
visualization. Additionally, we found a set of very similar bird im-
ages as shown in Figure 7. While this is not a clear error in the data
set, having multiple highly similar images of an ostrich in this data
set is at least debatable.

Our approach is generally targeted towards domain-experts that
get their data labeled and then train a classifier on that data or use

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

S0 oS 8 S5

Figure 7: At the bottom of our in-detail visualization, we show
pairs of similar images. The user can then decide whether these
should stay in the labeled data set (e. g. in cases where data aug-
mentation is used) or if they should be removed (in case of un-
wanted duplicates). The images show five similar images of a bird
discovered in the Cifarl0 data set (original resolution 32 by 32).

online services such as AutoML [Goo19] for training classifiers.
Here, these control mechanisms are even more important, as data
quality can be worse than in benchmark datasets. However, the fact
that we were even able to find errors in two of the most popular
benchmark data sets in the machine learning community shows
how important approaches as the one we propose are.

5.2. Qualitative Evaluation

Based on our implementation, we additionally conducted a qualita-
tive study to test the applicability of our approach. In our user study,
10 participants had to find and resolve errors in a labeled data set.
Participants were recruited in a university setting, whereby out of
the 10 participants, only two had experience with neural networks
and none of them had seen or heard of our approach before. This
shows, that no ML background is needed to use our visualization
guidelines.

To generate a setup in which we could recruit participants in a
university setting while still reflecting a real-world scenario, where
data-experts would correct their noisy data set using our approach,
we chose to use the MNIST data set in our study. This dataset re-
quires no prior knowledge to review, as it consists of hand-drawn
digits, which anyone can identify. To be able to verify which items
have been changed by a participant, we corrupted the data set by
introducing five errors of each type. For Class Interpretation Er-
rors, we changed 1,400 images from nine to six, 700 images from
one to four, 700 images from three to one, 350 images from eight
to two and 175 images from seven to three. For Instance Interpre-
tation Errors, we changed the labels of five images from different
classes. With this, we tried to reflect real-world scenarios, where
CIEs would introduce many more incorrect labels than IIEs. Sim-
ilarity Errors were introduced by duplicating five images. In this
study, we told the participants to remove all duplicates, as reason-
ing about if they are actually harmful could not be done in this
setting. In total, we introduced 3,330 mislabeled images and five
duplicates.

We then trained on this data set and visualized the results using
our implementation. The classification accuracy for this manipu-
lated data set was at 94.37 percent, hence, participants were only
presented the 5.63 percent that were misclassified. This equals to
about 4,000 out of the 70,000 images. We provided a short in-
troduction of about 10 minutes which showed our idea for data-
cleanup and explained the task, which was to resolve as many er-
rors as possible in 15 minutes. We then let them use the approach
we propose in this paper to resolve all errors they spotted.

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

With our similarity guidance, all participants were able to resolve
all duplicates. We mainly attribute this to our visually prominent
similarity indicators in the data set overview, and the fact, that the
most similar items in a Ibl/cls combination are shown separately
when inspecting such combinations in detail. On average, every
participant changed the labels of 2,902 images, of which only 27.5
were incorrectly changed. They thus managed to bring the num-
ber of incorrect labels down by 85.65 percent on average. This is a
reduction to 477 errors from 3,330 after only one iteration of our
approach. We then used the corrected data sets to train the clas-
sifier once again for each participant. On average, the validation
accuracy rose to 99.05 percent, which shows the enormous impact
of such data-cleanup. This shows the applicability of our approach
to cleaning noisy labeled datasets.

Looking at the images that we initially considered as incorrectly
changed also provided an interesting insight. When investigating
them, we found that some of them seemed to be mislabeled in the
original data set. The participants thus found new errors in the well-
established MNIST data set by using our approach. Examples of
these errors are included in the supplementary material.

To also evaluate the usability of our techniques, we asked the par-
ticipants to rate the helpfulness of our approach. They had to rate
the helpfulness of the visualizations from one, not helpful at all, to
five, helped a lot, all of them rated the visualizations between four
and five, with an average of 4.4. When asked what they found most
helpful, most of them said the overview guidance approaches were
helpful for spotting errors in the data set. Some additionally men-
tioned that it is also essential to be able to inspect individual sam-
ples for resolving errors. When asked what was bad and could be
improved, many said that the latency was a problem. This, however,
was a problem specific to the study setup and not to our approach
perse.

As all participants were able to improve the data set by a large
margin and thus greatly improve classification accuracy, this study
shows that our proposed approach can, in fact, be a valuable tool to
clean up labeled data. Also, as our participants stated, our guidance
system helps users focus on critical training samples which greatly
reduces samples that need to be reinspected.

6. Limitations

Currently, the approach we present within this work is limited to
classification problems. For other problems, different error mea-
sures, as well as visual guidance systems, would have to be in-
vented, which remains an open research question. Additionally, the
error types we present within this paper cannot be applied out-
side the domain of classification problems. While our approach
is model-agnostic and does not depend on the data that is used,
the exemplar implementation we provide is focused on image-
data in combination with CNNs. We propose three types of er-
rors, which our analysis of labeling processes suggests are most
common. However, one could think of other error cases, for exam-
ple, if a labeler assigns completely random labels to all images. We
did not include such error cases, as most of them could be filtered
by traditional quality assurance methods. Nontheless, investigating
and handling other potential labeling errors remains an open chal-
lenge. Also, while matrix views are a common metaphor for getting

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

an overview of classification results for a data set, and our proposed
matrix is even more condensed than others, it cannot scale indefi-
nitely. We tested our approach with data sets containing up to more
than 20 classes. A data set with 22 different classes containing an-
imal skull X-Ray images, can be seen in our supplementary mate-
rial. Yet, for data sets that contain even more classes, matrix views
are not optimal. In this case, users would have to look at a subset of
classes rather than viewing the whole class-pool right away. How-
ever, this is a general research question and is not tied only to our
approach.

7. Conclusion

After introducing the problems that mislabeled training data for
classification algorithms bring with them, we formulate a novel
categorization of error types that typically occur in labeling settings
for classification tasks. While there are other approaches that aim at
improving noisy labels in training data, ours introduces the concept
of using the trained classifier as a support for resolving these three
different error types. The proposed visual correction approach can
be performed at any point in the lifetime of a training data set, and
permanently and reliably improves training data sets after the la-
beling process has been finished. Contrary to other approaches, our
visual error correction tightly couples automated approaches with
user interaction to ensure data quality. To model this visual cor-
rection approach, we define the user-tasks of first, detecting errors,
then, reasoning about them, and finally resolving them, which users
typically perform for cleaning up data sets. Our method fits espe-
cially well into the context of crowdsourced data-labels. With the
ongoing automation of data acquisition, as well as classifier train-
ing, we imagine such data-cleanup techniques to be picked up in
these contexts. Our approach could be a candidate to be plugged in
directly into services such as AutoML [Goo19], where labels and
classifiers can be obtained automatically, and correctly labeled data
is crucial.

Acknowledgments

This work was funded by the Carl-Zeiss-Scholarship for PhD stu-
dents.

References

[AHH*14] ALSALLAKH B., HANBURY A., HAUSER H., MIKSCH S.,
RAUBER A.: Visual methods for analyzing probabilistic classification
data. IEEE transactions on visualization and computer graphics 20, 12
(2014), 1703-1712. 6

[AJTY*18] ALSALLAKH B., JOURABLOO A., YE M., L1u X., REN L.:
Do convolutional neural networks learn class hierarchy? IEEE transac-
tions on visualization and computer graphics 24, 1 (2018), 152-162. 3,
4,6

[ASMP16] ARBESSER C., SPECHTENHAUSER F., MUHLBACHER T.,
PIRINGER H.: Visplause: Visual data quality assessment of many time
series using plausibility checks. IEEE transactions on visualization and
computer graphics 23, 1 (2016), 641-650. 3

[BHR*19] BERNARD J., HUTTER M., RITTER C., LEHMANN M.,
SEDLMAIR M., ZEPPELZAUER M.: Visual analysis of degree-of-interest
functions to support selection strategies for instance labeling. 2

[BHZ*17] BERNARD J., HUTTER M., ZEPPELZAUER M., FELLNER
D., SEDLMAIR M.: Comparing visual-interactive labeling with active
learning: An experimental study. /IEEE transactions on visualization and
computer graphics (2017). 2

[BZL*18] BERNARD J., ZEPPELZAUER M., LEHMANN M., MULLER
M., SEDLMAIR M.: Towards user-centered active learning algorithms.
In Computer Graphics Forum (2018), vol. 37, Wiley Online Library,
pp. 121-132. 2

[CAK17] CHANGIJ. C., AMERSHI S., KAMAR E.: Revolt: Collaborative
crowdsourcing for labeling machine learning datasets. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems
(2017), ACM, pp. 2334-2346. 2,3

[GAM™*14] GSCHWANDTNER T., AIGNER W., MIKSCH S., GARTNER
J., KRIGLSTEIN S., POHL M., SUCHY N.: Timecleanser: A visual an-
alytics approach for data cleansing of time-oriented data. In Proceed-
ings of the 14th international conference on knowledge technologies and
data-driven business (2014), pp. 1-8. 3

[Gool19] GOOGLE: Cloud AutoML BETA: Train high-quality custom
machine learning models with minimal effort and machine learning ex-
pertise. https://cloud.google.com/automl/, October 2019.
[Online; accessed 29-October-2019]. 9, 10

[HKBE12] HEIMERL F., KOCH S., BosCH H., ERTL T.: Visual classi-
fier training for text document retrieval. IEEE Transactions on Visual-
ization and Computer Graphics 18, 12 (2012), 2839-2848. 2

[HLW19] HAN J., Luo P., WANG X.: Deep self-learning from noisy
labels. arXiv preprint arXiv:1908.02160v2 (2019). 3

[HMWG18] HENDRYCKS D., MAZEIKA M., WILSON D., GIMPEL K.:
Using trusted data to train deep networks on labels corrupted by severe
noise. In Advances in neural information processing systems (2018),
pp- 10456-10465. 3

[HQJZ19] HUANGIJ., QUL.,JIAR., ZHAO B.: O2u-net: A simple noisy
label detection approach for deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision (2019), pp. 3326—
3334.2,3

[HSC*13] HANSEN D. L., SCHONE P. J., COREY D., REID M.,
GEHRING J.: Quality control mechanisms for crowdsourcing: peer re-
view, arbitration, & expertise at familysearch indexing. In Proceedings
of the 2013 conference on Computer supported cooperative work (2013),
ACM, pp. 649-660. 2

[IPSW14] IPEIROTIS P. G., PROVOST F., SHENG V. S., WANG J.: Re-
peated labeling using multiple noisy labelers. Data Mining and Knowl-
edge Discovery 28, 2 (2014), 402-441. 3

[JZL*17] JIANG L., ZHOU Z., LEUNG T., L1 L.-J., FEI-FEI L.: Men-
tornet: Learning data-driven curriculum for very deep neural networks
on corrupted labels. arXiv preprint arXiv:1712.05055 (2017). 3

[KHO09] KRIZHEVSKY A., HINTON G.: Learning multiple layers of fea-
tures from tiny images. 6, 7, 8

[KH16] KAIRAM S., HEER J.: Parting crowds: Characterizing divergent
interpretations in crowdsourced annotation tasks. In Proceedings of the
19th ACM Conference on Computer-Supported Cooperative Work & So-
cial Computing (2016), ACM, pp. 1637-1648. 2

[KLA17] KHETAN A., LIPTON Z. C., ANANDKUMAR A.: Learning
from noisy singly-labeled data. arXiv preprint arXiv:1712.04577 (2017).
1,3

[KPHH11] KANDEL S., PAEPCKE A., HELLERSTEIN J., HEER J.:
Wrangler: Interactive visual specification of data transformation scripts.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (2011), pp. 3363-3372. 3

[KPP*12] KANDEL S., PARIKH R., PAEPCKE A., HELLERSTEIN J. M.,
HEER J.: Profiler: Integrated statistical analysis and visualization for
data quality assessment. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (2012), pp. 547-554. 3

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

A. Biiuerle, H. Neumann, and T. Ropinski / Classifier-Guided Visual Correction

[LC10] LECUN Y., CORTES C.: MNIST handwritten digit database.
URL: http://yann.lecun.com/exdb/mnist/ [cited 2016-01-
14 14:24:111. 7

[LCL*19] Liu S., CHEN C., LU Y., OUYANG F., WANG B.: An inter-
active method to improve crowdsourced annotations. IEEE transactions
on visualization and computer graphics 25, 1 (2019), 235-245. 2

[LHZY18] LEE K.-H., HE X., ZHANG L., YANG L.: Cleannet: Trans-
fer learning for scalable image classifier training with label noise. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 5447-5456. 2, 3

[MHG15] MITRA T., HUTTO C. J., GILBERT E.: Comparing person-and
process-centric strategies for obtaining quality data on amazon mechani-
cal turk. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (2015), ACM, pp. 1345-1354. 2

[MHM18] MCINNES L., HEALY J., MELVILLE J.: Umap: Uniform
manifold approximation and projection for dimension reduction. arXiv
preprint arXiv:1802.03426 (2018). 7, 8

[NNL*19] NGUYEND.T.,NGO T.-P.-N.,LoU Z., KLAR M., BEGGEL
L., BROX T.: Robust learning under label noise with iterative noise-
filtering. arXiv preprint arXiv:1906.00216 (2019). 3

[NOPF10] NETTLETON D. F., ORRIOLS-PUIG A., FORNELLS A.: A
study of the effect of different types of noise on the precision of super-
vised learning techniques. Artificial intelligence review 33, 4 (2010),
275-306. 1

[PNMK16] PARKJ. H., NADEEM S., MIRHOSSEINI S., KAUFMAN A.:
C 2 a: Crowd consensus analytics for virtual colonoscopy. In 2016 IEEE
Conference on Visual Analytics Science and Technology (VAST) (2016),
IEEE, pp. 21-30. 3

[PRKM*17] PATRINI G., ROzzZA A., KRISHNA MENON A., NOCK R.,
Qu L.: Making deep neural networks robust to label noise: A loss cor-
rection approach. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017), pp. 1944-1952. 3

[PTPPO6] PECHENIZKIY M., TSYMBAL A., PUURONEN S., PECH-
ENIZKIY O.: Class noise and supervised learning in medical domains:
The effect of feature extraction. In /9th IEEE Symposium on Computer-
Based Medical Systems (CBMS’06) (2006), IEEE, pp. 708-713. 1

[RAL*17] REN D., AMERSHI S., LEE B., SUH J., WILLIAMS J. D.:
Squares: Supporting interactive performance analysis for multiclass clas-
sifiers. IEEE transactions on visualization and computer graphics 23, 1
(2017), 61-70. 6

[RK12] RZESZOTARSKIJ., KITTUR A.: Crowdscape: interactively visu-
alizing user behavior and output. In Proceedings of the 25th annual ACM
symposium on User interface software and technology (2012), ACM,
pp. 55-62. 2

[RKK*11] RoOGSTADIUS J., KOSTAKOS V., KITTUR A., SMUS B.,
LAREDO J., VUKOVIC M.: An assessment of intrinsic and extrinsic
motivation on task performance in crowdsourcing markets. ICWSM 11
(2011), 17-21. 2

[RLA*14] REED S., LEE H., ANGUELOV D., SZEGEDY C., ERHAN D.,
RABINOVICH A.: Training deep neural networks on noisy labels with
bootstrapping. arXiv preprint arXiv:1412.6596 (2014). 3

[RYHH10] RASHTCHIAN C., YOUNG P., HODOSH M., HOCKENMAIER
J.: Collecting image annotations using amazon’s mechanical turk. In
Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and
Language Data with Amazon’s Mechanical Turk (2010), Association for
Computational Linguistics, pp. 139-147. 1

[RZYU18] REN M., ZENG W., YANG B., URTASUN R.: Learn-
ing to reweight examples for robust deep learning. arXiv preprint
arXiv:1803.09050 (2018). 3

[Setl0] SETTLES B.: Active learning literature survey. University of
Wisconsin, Madison 52, 55-66 (2010), 11. 2

[Setl1] SETTLES B.: Closing the loop: Fast, interactive semi-supervised
annotation with queries on features and instances. In Proceedings of the

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.

conference on empirical methods in natural language processing (2011),
Association for Computational Linguistics, pp. 1467-1478. 2

[SOS92] SEUNG H. S., OPPER M., SOMPOLINSKY H.: Query by com-
mittee. In Proceedings of the fifth annual workshop on Computational
learning theory (1992), ACM, pp. 287-294. 2

[SPIOS] SHENG V. S., PROVOST F., IPEIROTIS P. G.: Get another label?
improving data quality and data mining using multiple, noisy labelers.
In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining (2008), ACM, pp. 614-622. 3

[TIYA18] TANAKA D., IKAMI D., YAMASAKI T., A1zAwA K.: Joint
optimization framework for learning with noisy labels. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(2018), pp. 5552-5560. 2, 3

[UCOT11] UsaMI Y., CHO H.-C., OKAZAKI N., TsUJII J.: Automatic
acquisition of huge training data for bio-medical named entity recogni-
tion. In Proceedings of BioNLP 2011 Workshop (2011), Association for
Computational Linguistics, pp. 65-73. 1

[VAC*17] VEIT A., ALLDRIN N., CHECHIK G., KRASINI., GUPTA A.,
BELONGIE S.: Learning from noisy large-scale datasets with minimal
supervision. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2017), pp. 839-847. 3

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLIE. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing 13, 4 (2004), 600-612. 5

[WGS*13] WILLETT W., GINOSAR S., STEINITZ A., HARTMANN B.,
AGRAWALA M.: Identifying redundancy and exposing provenance in
crowdsourced data analysis. [EEE Transactions on Visualization and
Computer Graphics 19, 12 (2013), 2198-2206. 3

[Will7] WILKINSON L.: Visualizing big data outliers through distributed
aggregation. IEEE transactions on visualization and computer graphics
24,1(2017), 256-266. 3

[XYX*19] XIANG S., YE X., XIA J., WU J., CHEN Y., L1U S.: Inter-
active correction of mislabeled training data. 3

[ZBH*16] ZHANG C., BENGIO S., HARDT M., RECHT B., VINYALS
O.: Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530 (2016). 1

[ZS18] ZHANG Z., SABUNCU M.: Generalized cross entropy loss for
training deep neural networks with noisy labels. In Advances in neural
information processing systems (2018), pp. 8778-8788. 3

[ZZW18] ZHANG X., ZHU X., WRIGHT S.: Training set debugging us-
ing trusted items. In Thirty-Second AAAI Conference on Artificial Intel-
ligence (2018). 3

NET2VIS - A VISUAL GRAMMAR FOR
AUTOMATICALLY GENERATING
PUBLICATION-TAILORED CNN ARCHITECTURE
VISUALIZATIONS

Alex Béuerle, Christian van Onzenoodt, and Timo Ropinski. “Net2Vis—
A Visual Grammar for Automatically Generating Publication-Tailored
CNN Architecture Visualizations.” In: IEEE Transactions on Visualization
and Computer Graphics 27.6 (2021), pp. 2980-2991

© 2021 IEEE. Reprinted, with permission, from Alex Bauerle, Christian
van Onzenoodt, and Timo Ropinski, Net2Vis — A Visual Grammar for
Automatically Generating Publication-Tailored CNN Architecture Vi-
sualizations, IEEE Transactions on Visualization and Computer Graph-
ics, June 2021.

61

2980

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 6, JUNE 2021

Net2Vis — A Visual Grammar for Automatically
Generating Publication-Tailored CNN
Architecture Visualizations

Alex Bauerle

, Christian van Onzenoodt

, and Timo Ropinski

Abstract—To convey neural network architectures in publications, appropriate visualizations are of great importance. While most
current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack
of a common visual grammar, significant time investment, errors, and ambiguities. Current automatic network visualization tools focus
on debugging the network itself and are not ideal for generating publication visualizations. Therefore, we present an approach to
automate this process by translating network architectures specified in Keras into visualizations that can directly be embedded into any
publication. To do so, we propose a visual grammar for convolutional neural networks (CNNs), which has been derived from an
analysis of such figures extracted from all ICCV and CVPR papers published between 2013 and 2019. The proposed grammar
incorporates visual encoding, network layout, layer aggregation, and legend generation. We have further realized our approach in an
online system available to the community, which we have evaluated through expert feedback, and a quantitative study. It not only
reduces the time needed to generate network visualizations for publications, but also enables a unified and unambiguous

visualization design.

Index Terms—Neural networks, architecture visualization, graph layouting

1 INTRODUCTION

APERS utilizing CNNs are published on a daily basis. An
Pessential aspect of all these publications is to communi-
cate the used or developed network architecture. Accord-
ingly, a rising number of architecture visualizations can be
observed from year to year (see Fig. 2). Authors, who often
may lack visualization expertise, mostly use handcrafted,
non-standardized visualizations. As a consequence, gener-
ating visualizations takes significant time, and authors often
employ suboptimal visual encodings that are sometimes
even inaccurate or erroneous.

We argue, as backed by our expert questionnaire
(see Section 6), that the time invested in suboptimal visual-
izations would be better used to improve training results.
Nevertheless, such abstract visualizations are generally con-
sidered to be of great importance. Therefore, automated
approaches that obey to a common visual grammar are
required. We argue that, ideally, such a visual grammar
should be informed by three factors: current practice, expert
demands, and visualization expertise. Accordingly, we
have analyzed properties of existing architecture visualiza-
tions, which we scraped from all ICCV and CVPR papers
published between 2013 and 2019 — which led to a pool of

o The authors are with the Visual Computing Group at Ulm University,
89081 Ulm, Germany. E-mail: {alex.baeuerle, christian.van-onzenoodt,
timo.ropinski}@uni-ulm.de.

Manuscript received 28 May 2020; revised 26 Jan. 2021; accepted 3 Feb. 2021.
Date of publication 8 Feb. 2021; date of current version 29 Apr. 2021.
(Corresponding author: Alex Biuerle.)

Recommended for acceptance by S. Liu.

Digital Object Identifier no. 10.1109/TVCG.2021.3057483

751 such visualizations. ICCV and CVPR are prime confer-
ences on machine learning for vision-related tasks and,
thus, reflect the great need for such automated visualization
approaches. Additionally, we contacted authors of highly
cited papers encompassing architecture visualizations, in
order to assess their demands. Last but not least, we
brought in established rules from the data visualization lit-
erature to inform our visual grammar. Based on this, we
propose the first method to automatically generate abstract,
publication-tailored visualizations of complex, modern CNN
architectures, obeying a unified visual grammar, which we
refer to as Net2Vis. To this end, we make the following three
main contributions:

1) We propose a set of requirements for effectively
communicating neural network architectures, based
on expert feedback and the analysis of existing
visualizations.

2) Based on these requirements, we propose a new
visual grammar for CNN architecture visualizations,
which we make available via an online platform that
transforms Keras code into visualizations tailored to
the use in publications.

3) We release a data set of 751 neural network architec-
ture visualizations, which we have extracted from all
papers published at ICCV and CVPR between 2013
and 2019.

Fig. 1 shows an example visualization of a U-Net variant
generated using our approach. To evaluate our approach,
we conducted both a quantitative user study and a qualita-
tive usability evaluation. The obtained results indicate that
our techniques are beneficial for creating and reading CNN

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

BAUERLE ET AL.: NET2VIS — A VISUAL GRAMMAR FOR AUTOMATICALLY GENERATING PUBLICATION-TAILORED CNN...

2981

N
v
o
X

N
v
o

871X8Z1

Conv MaxPool UpSampling

[H

Concatenate

87TX8Z1

H 1

Basic

Fig. 1. Visualization of a U-Net variant. It was automatically generated using our approach based on the Keras code describing the architecture. Data
flows from left to right. Glyphs represent layers or aggregates, while lines represent connections. Glyph widths communicate feature size, while
heights communicate the spatial resolution. Both values are also given through labels, while dashed boxes on the left and right serve as placeholders
to provide input and output samples. The legend communicates layer types and the composition of aggregates.

architecture visualizations, which is important for broad
acceptance and unambiguous CNN architecture communi-
cation. Our techniques can be used in the form of an online
platform at: https://viscom.net2vis.uni-ulm.de.

2 RELATED WORK

Handcrafted visualizations are part of many research papers
that use neural networks in their publications [1], [2], [3], [4].
However, they differ greatly in their visual appearance,
which complicates transferring knowledge between them,
e.g., [5], [6], [7]. In addition, they sometimes contain errors,
as can be observed in work done by Henzler et al. [8], where
visual glyph encoding and glyph labeling diverge. Thus,
automatically visualizing network architectures to convey
their underlying ideas is an extensive field of research. In the
following, we divide related research into approaches for
debugging and investigating network architectures, and
approaches targeted towards communicating these.

Debugging Approaches. Demonstrating the importance of
visualization for the field, most deep learning frameworks,
such as Tensorflow [9] with TensorBoard [10], Caffe [11]
with Netscope [12], and also Keras [13], directly provide
visualization toolkits.

All of these are clearly designed for online use. They are
based on vertical layouts for detailed visualizations

225

150

75

Number of extracted Figures

] (] 0 1
0 -
Ve Ve %4
OO% OLAO% OLA% OO[g> Oe%) 40'9 OO% O% L, OOLT_) O%Q
12} 0, 2 2 0, 0, %
. 0{? 0,7 75 0’6‘ [2} 7 0O, N 0,(9 7o 0)‘9

Conference

Fig. 2. Number of CNN architecture figures we extracted from all ICCV
and CVPR papers between 2013 and 2019. We searched for pages of
papers containing figures and the words figure and architecture in the
same line to extract these. Then we manually filtered them to obtain only
neural network architecture visualizations.

including all layers and parameters and provide some infor-
mation only on interaction. Their consumption of visualiza-
tion space and required user interaction are perfect for
debugging the network architecture, but it renders them
inapplicable for use in publications.

Network visualization tools similar but unrelated to
these frameworks such as ANNvisualizer [14] and Netron
[15] suffer comparable shortcomings. Their glyphs do not
convey any information apart from layer type, whereby
additional information is displayed by overlaying textual
annotations on top of the used glyphs. Additionally, their
vertical layout, along with spacing between layers makes
even small networks appear relatively large.

Another interesting visualization approach along this
line was presented by Wang et al. [16]. Here, the focus is
on comparing different neural network architectures. The
approach can be used to identify differences in neural
architecture design, compare the number of parameters,
and draw conclusions for one’s own architecture choice.
However, while this approach allows for in-depth compar-
isons through interactive visualizations, it is not designed
to convey network architecture details in a compressed,
static way.

Communication Approaches. Some visualizations convey
neural network architectures to explain their functionality
to novices [17], [18], [19], [20], [21], or are targeted towards
analyzing what a network has learned [22], [23], [24], [25].
These visualizations clearly fulfill their purpose to support
education or interpretability, but are not designed for use in
publications. They all display basic network architectures
limited to a specific use case and are not generalizable to
more complex architectures.

One visualization technique that is specifically targe-
ted towards use in scientific papers is Drawconvnet [26].
Convnet-drawer [27], which builds on the aforementioned,
provides such visualizations, and even allows visualiza-
tion generation from source code. Similarly, NN-SVG also
claims to create publication-ready network visualizations
[28]. While these techniques can be used for small and sim-
ple networks, they all face major problems. First, they do
not scale to modern, large network architectures since no
aggregation technique is implemented. Second, they visual-
ize layer connections simply by placing the layers from left
to right, which means that parallel network parts cannot be

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

2982

represented. Additionally, in Drawconvnet and NN-SVG,
users have to invest the time to rebuild their network archi-
tecture to obtain visualizations.

The surveys by Hohman et al. [29] and Yuan ef al. [30] dis-
cuss many of these graph visualization techniques. One
important downside of all currently available approaches is
that they struggle to visualize large networks in a compact
way. Thus, it remains an open challenge to generate publica-
tion-tailored visualizations, despite the existence of the visu-
alization systems described above. Current state-of-the-art
visualizations [10], [12], [15] allow to inspect operations in
great detail. However, these visualizations lack abstractions
to make the general network structure comprehensible at a
glance. For a demonstration of this problem, see our supple-
mentary material, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2021.3057483, which contains a comparison
between Netron, Netscope, TensorBoard, and our approach.
Other visualization techniques that aim at providing publi-
cation-ready visualizations cannot handle modern network
architectures [26], [27], [28] and lack important features
requested by experts. Thus, in research papers, these com-
plex networks are usually simplified and drawn manu-
ally [4], [7], [8].

Besides the extra time effort related to this manual draw-
ing process, the field lacks guidelines to create such visual-
izations, as is observable in our review of papers from
CVPR and ICCV. Some properties in existing visualizations
are ambiguously interpretable, e.g., where downsampling
happens, and, for the lack of a common visual grammar,
knowledge can hardly be transferred between different
publications. Therefore, we propose a novel visualization
technique for abstract architecture visualizations that are
optimized for use in scientific publications, where display-
space is limited and interaction is impossible.

3 DESIGN REQUIREMENTS ABSTRACTION

We argue that for abstract CNN visualizations, both model
properties and layer properties need to be visualized.
Model properties are important for the layout and arrange-
ment of the network architecture, while layer properties
visualize parameters of individual layers, or groups of
layers. In the following sections, we describe how we used
the analysis of current practice and insights from visualiza-
tion research to inform our design proposition for CNN
architecture visualizations.

Data Collection. To support this analysis, we interviewed
multiple ML practitioners and reviewed 751 figures of neu-
ral network architectures extracted from papers of all CVPR
and ICCV conferences between 2013 and 2019. This data
was gathered by crawling http://openaccess.thecvf.com/
for all 7988 main conference papers using scrapy [31]. We
then filtered for neural network architecture visualizations
and extracted all 1168 pages that contain a figure and had a
line of text containing both the words figure and architecture
using PyPDF2 [32]. We used pdffigures2 [33] to then extract
the figures from these pages. This yielded 1027 images
which we manually coded with respect to their visualiza-
tion design choices. Since some of the used tools did not
work perfectly, we had to delete images that did not

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 6, JUNE 2021

contain, or contained corrupted versions of architecture vis-
ualizations, leaving a total of 751 figures. To our knowledge,
this is the first data set of such visualizations. The visualiza-
tion properties we analyzed are italicized in the following
sections and listed in the data set we release alongside this
paper. The following observations are based on both, expert
feedback and this figure analysis. When based on figure
analysis, we indicate how many of the analyzed papers
used a certain encoding as a percentage value.

3.1 Model Properties

In the following, we discuss which model properties of a
neural network need to be communicated to quickly assess
relevant architectural decisions within a neural network, as
derived from the collected data.

Layout. Maybe the most important factor when visualiz-
ing neural network architectures is the interconnection of
layers as it communicates the order in which the computa-
tion graph is executed. At the same time, there is also lim-
ited space for publication figures, which is to be taken into
account when designing such visualizations. Thus, one has
to find a layout that clearly communicates the order of com-
putations, while also not wasting too much space for a sin-
gle publication figure.

Connections. A consistent layout helps to resolve the
order in which the network graph is traversed, but there is
still important information missing, namely, connectivity.
Without connectivity information, it is not clear which layer
in a network routes data to which following layers. Espe-
cially if network graphs contain parallel execution steps,
simply laying out the network layers in a consistent manner
will not always resolve which layers actually interact with
each other. Thus, communicating which layers are con-
nected in the computation graph is essential.

Aggregations. When thinking about visualizing modern
network architectures in publications, space and complexity
is a major point of concern. It is a well-known fact in the visu-
alization literature that hierarchical aggregation can help to
simplify visualization designs [34]. Following this, as net-
works get more complex, authors manually aggregate layers
to make their architectures fit on one page (63.4 percent).
Here, legends sometimes indicate which layers are aggre-
gated (15.2 percent). Both of these numbers were rising over
the years, as shown in our supplementary material, available
online. We, thus, argue that communicating modern net-
work architectures requires a way of aggregating layer
glyphs to create overview visualizations.

Omission. Another way of simplifying displayed network
architectures is to just omit layers that are not important to
convey the general idea of the network architecture. This is
supported by our expert feedback, which indicates that sim-
plification is a major feature for visualizations of neural net-
work architectures.

Input and Output Samples. Several of the network visual-
izations incorporate input or output examples (73.1 percent).
However, samples are mainly useful for image or shape
related tasks and do not provide additional information
concerning the network architecture. We thus argue that
such samples can help for some application areas, while
they should not be presented for others.

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

BAUERLE ET AL.: NET2VIS — A VISUAL GRAMMAR FOR AUTOMATICALLY GENERATING PUBLICATION-TAILORED CNN...

3.2 Layer Properties

Layers are the building blocks of the computation graph
that defines any network architecture. Thus, visualizing
properties that parametrize these layers is important to con-
vey the structure and architectural decisions of said net-
work. In the following, we discuss important layer
properties and explain which of those should be visualized
for obtaining a general overview of a network architecture.

Layer Type. We consider the layer type to be the most
important layer-specific variable. Together with the model
properties, it already helps greatly in determining the func-
tionality of a neural network. It is thus important to encode
layer types as a visually prominent variable.

Spatial Resolution. Next, to determine the functionality of
a neural network architecture, it is important to be able to
follow the transformation of data into or out of the latent
space, which is often referred to as the change of spatial res-
olution. Thus, the dimensionality of data is another variable
to be considered when visualizing neural network architec-
tures. While only slightly more than half of the surveyed
visualizations encode the spatial resolution (53.7 percent),
expert feedback, and the fact that this variable can be
encoded within the layer glyphs, suggests that visualizing it
brings great benefit at no cost. We thus advocate for always
providing information about spatial resolution.

Feature Channels. All previously mentioned attributes
apply to almost all types of neural networks. Feature chan-
nels, on the other hand, are mainly important for CNNs.
Thus, most visualizations do not at all encode the number
of feature channels (56.7 percent). Since feature channels
match the variable type of the spatial resolution, and since
they are tightly coupled across the network, they are often
viewed in combination. Thus, they support the assessment
of data transformation, and our evaluations surfaced that
their display is important for architecture visualizations of
CNNe.

3.3 Properties Not to Be Visualized
We propose a set of properties to be visualized for provid-
ing an overview of a network architecture. However, there
are other properties we explicitly advise to omit in non-
interactive visualizations of neural network architectures.
Kernel Size. Kernel sizes can be found in many visualiza-
tions as textual descriptions of layers (24.4 percent) or as
encodings in the layer glyphs (5.0 percent), but are not
encoded in most of the visualizations (73.5 percent). When
analyzing why kernel sizes are not displayed in most visual-
izations, two factors were apparent. First, kernel sizes often
are consistent across multiple layers leading to repeated
information. This is in contrast with the request for reduced
complexity by domain experts (see Section 6). However, the
biggest problem with them is that they are in stark contrast
with layer aggregations, which are important to reduce the
complexity of network visualizations. For aggregations,
there is no such thing as one kernel size as it may differ for
layers contained in them. Additionally, as aggregations are
reused, kernel sizes may be different again. We aim at
reducing repetition and embracing aggregation. Thus, we
propose not to display kernel sizes in overview visualiza-
tions for neural networks. This is in line with the expert

2983

feedback of domain experts, e.g. I'm very interested in great
visualization tools that emphasize function and architecture over
the kind of "obtuse prettiness” [...].

Additional Layer Properties. Neural network layers contain
many more features such as weights, strides, padding, and
others. Yet, most of them only exist for certain layer types
and are thus rarely communicated. Some printed visualiza-
tions include features such as activation maps, e.g., [5], or
receptive fields, e.g., [35], but they are only provided for
specialized use cases. In contrast, we argue that for obtain-
ing a general network architecture overview, such features
are not necessary. This is supported by our expert feedback
and in line with our goal of providing an abstract overview
of the network architecture, where detailed information can
be obtained by reading the publication it is contained in.

Dimensionality. Three-dimensional visualizations are help-
ful if the reader’s task includes shape understanding, but
less so for any relational task [36], [37]. Thus, the relation
of layers and their spatial position would suffer from
being visualized in 3D, while the benefit of using three-
dimensional layer glyphs would only be to resemble the
shape of data in case it is three-dimensional. Another impor-
tant argument against three-dimensional visualizations in
publications is that the viewpoint cannot be changed. Con-
trary, exploration is essential for utilizing the benefits of
three-dimensional visualizations [36], [38]. About half of
the analyzed network visualizations display layers in 3D
(50.2 percent), however, this added dimension does not con-
vey additional information for most of them. Since the reduc-
tion of spatial resolution is almost always applied to all
spatial dimensions equally, the third dimension is not
needed for the visualization of such changes. For those rea-
sons, we advise not to visualize layer glyphs in 3D.

3.4 Summary
Based on these requirements, we propose to use the follow-
ing properties in any visualization that aims at providing a
general overview of a CNN architecture in non-interactive
visualization environments:

Model Properties

1) Layout

2) Connections

3) Aggregations

4) Omission

5) Input and Output Samples (for some tasks)

Layer Properties

1) Layer Type

2) Spatial Resolution

3) Feature Channels (for convolutional layers)

We, thus, elaborate on what to visualize in this section,
defining the dimensions of our proposed design space. This
assessment is based on our analysis of figures extracted
from the top conferences in the field, as well as expert feed-
back both before and during the development of our
approach. It is strictly tailored towards conveying the over-
all idea of a network architecture, and does not cover cases
in which specific features of a network are to be communi-
cated. Therefore, we also provide guidelines for which fea-
tures not to visually encode for abstract architecture

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

2984

visualizations, thus preserving simplicity and preventing
the need for interaction. By always visualizing the afore-
mentioned parameters in the same way, users can transfer
knowledge between different visualizations. We thus advise
not to render the mapping of variables customizable.
Instead, we propose a unified visualization design for these
parameters. In the following sections, we map these visuali-
zation properties (i.e., what to visualize) to specific visual
encodings (i.e., how to visualize them), describing the pro-
posed design space inspired by similar design space
descriptions [39], [40].

4 VISUALIZATION OF MODEL PROPERTIES

Based on our assessment of important visualization aspects
for communicating CNN architectures as described in the
previous section, we now explain how we propose to visu-
ally encode the model properties. For these global proper-
ties, the design space consists of the aforementioned
dimensions, i.e., Layout, Connections, Aggregations, Omis-
sion, and Data Samples, which we describe in the following
subsections.

4.1 Layout

The representation of this design space dimension mainly
concerns the spatial arrangement of layers which can be ver-
tical or horizontal, and in any direction. Most investigated
neural network visualizations layout their layers from left
to right (81.6 percent). Our figure analysis as well as the col-
lected expert feedback indicate that for publications, this
layout is preferable over vertical layouts, which are often
used in online tools. It does not only preserve the reading
direction of western cultures, but visualizations also nicely
fit across the width of a page. Furthermore, perceptual rank-
ings indicate that position best encodes ordered data [41],
[42], [43], such as the order of network layers. Follow these
insights, and the fact that space taken up by publication fig-
ures is important, we propose to employ a narrow horizon-
tal layout, in which parallel execution steps of the network
are stacked vertically on the same horizontal position.

To layout CNN graphs, we propose to use the network
simplex algorithm [44] which is explicitly targeted towards
drawing directed rank-based graphs. The rank-based nature
of this algorithm perfectly fits our use case in which parallel
layers are to be placed at the same x-coordinate, and
sequential parts of the network tend to be drawn on the
same vertical level. Using an algorithm that only layouts
series-parallel graphs is not an option, since Keras opera-
tions are not restricted to those (e.g., [a — b,a — ¢, b —
dyc— d,d— e, b— e]).

4.2 Connections

For this dimension of the design space, possible representa-
tions are an implicit connectivity without explicit visualiza-
tions and different forms of connecting lines. In existing
figures, connections between layers are visualized either
using lines (73.4 percent) or by simply placing layers next to
each other. Some visualizations additionally add arrow-
heads to clarify the direction of data flow (65.9 percent). Fol-
lowing most visualizations, we also propose to use lines as
connections between layers to emphasize the graph structure

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 6, JUNE 2021

(a) Data-paths (b) Dimensionality

(c) Handles

Fig. 3. (a): Two simultaneous data-paths. The layer displayed on the left
has two outgoing connections, while the layer displayed on the right
fuses these paths back together. (b): Left: layer that reduces the spatial
resolution; Center: same spatial resolution for input and output; Right: a
layer that increases the spatial resolution (c): Multi-handled glyphs are
always connecting corners on the input side with corners on the output
side, here depicted by a dotted line.

of neural networks. However, we propose not to add arrow-
heads to these connections, as the forward data flow direc-
tion is uniformly left-to-right in our visualizations.

Many architectures contain skip connections visualized by
lines between distant layers (55.9 percent, rising over the
years, see supplementary material available online). Dis-
playing splits in the execution graph only through lines has
the negative implication that size-related attention bias is
induced [45], [46]. Thus, we propose a glyph design that
prevents such issues. Whenever a layer has multiple outgo-
ing or incoming connections, we modify the glyph that rep-
resents it as shown in Fig. 3a. This way, there might be
multiple ends on the left or the right side of the glyph each
having the same visual prominence. At the same time, splits
and joins of the data flow, which are important features of
the architecture, are highlighted. A visual representation of
such multi-handled glyphs is illustrated in Fig. 3c.

One might think that this layer shape induces problems
with edge crossings. However, edge-crossings are uncom-
mon to neural network architectures. We have only found
planar network graphs which consequently can be laid out
to avoid crossing edges.

4.3 Aggregation
The aggregation of multiple layers is another dimension in
our design space. Here, representations can be no aggrega-
tion of layers, vertical stacking, or replacement with a group-
representing glyph. As modern networks become increas-
ingly complex, the aggregation of layers is inevitable. Such
aggregations can contain many layers at once, and even par-
allel paths, which is why we do not employ a stack-based
visualization. Instead, we adopt the paradigm of providing
ways to aggregate multiple layers and replacing them with a
new, single glyph. As this removes direct insight into the
content of aggregations, we resolve them in a legend below
the network graph. Furthermore, domain experts and users
frequently requested a visual separation of aggregations.
Thus, in our approach, their border is drawn thicker, and
their color scheme is inverted (lighter border than center).
Aggregation Constraints. As aggregations substitute all
occurrences of selected layer sequences throughout the

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

BAUERLE ET AL.: NET2VIS — A VISUAL GRAMMAR FOR AUTOMATICALLY GENERATING PUBLICATION-TAILORED CNN...

14445444
TIIXCIL

Conv

Gl.Avg.Pool

Dense

Input Add

Route

2985

2048 1000

MaxPool

Hin)

Residual 1

o

Residual 2

Fig. 4. With ResNet50, the removal of activation and batch-normalization layers from the visualization, which do not add information about the net-
work structure, along with the repetition of residual blocks in ResNet allows us to reduce the number of glyphs that need to be drawn from 177 to
just 21, even though we added routing layers to clearly define the beginning of a residual block.

graph, only parts of the network graph that can be repre-
sented by one sequential layer can be aggregated. We, thus,
restrict aggregation to sequentializable segments. This way,
no deformed aggregation layers can occur, where two out-
puts or inputs might differ in their spatial resolution. This
ensures visual consistency such that layers always manipu-
late the data the same way for all of their connections and
that all connections of each layer end on the same horizontal
level in the graph.

Automatic Aggregation. To generate aggregations, the
layers to be aggregated can either be selected by the user or
more conveniently be selected automatically. To obtain
automatic aggregations, we propose to analyze all sequen-
tial parts of the network. We then search for recurring
sequences of layers. The most frequent of these sequences is
then assumed to be the preferred aggregation.

Interacting With Aggregations. We argue that visualiza-
tion designers should be able to remove or temporally
deactivate aggregations of the network, which expands
abstracted layers back to their initial layout. Deactivated
aggregations are preserved in the legend for later reuse to
be able to explore the visualization without losing informa-
tion. To visually convey the state of aggregation, we pro-
pose to draw active ones with a dark outline and black
description text, while outlines and text are drawn in light
gray for inactive aggregations and layer types that are hid-
den by the user.

This way, the effect of different aggregation levels can be
explored while preserving all aggregation information.

Split Layers. While there are dedicated layers to fuse com-
putation paths, routing the data to multiple outputs is done
implicitly. Thus, it is possible, that, e.g., an activation layer
feeds data to two different paths. Visually, this is a problem
as splits and merges of the computation graph are often
seen as blocks and frequently get aggregated by the user.
Activations are orthogonally seen as the end of a computa-
tion group rather than a start of one. For such dedicated
groups, we argue that the user should be able to add special
routing layers. This way, they can clearly communicate the
special role of such multi-path aggregations while also
assigning more importance to data path splits, e.g., as
shown in Fig. 4.

4.4 Omission
In the computation graph, any function that has been added
by the developer is considered a network layer. However,

these graphs can be defined at different levels of detail (e.g.,
activation within layer or separately). Thus, in our
approach, this graph can be thinned by the user to better
convey the underlying architecture rather than each indi-
vidual computation step by hiding individual layer types
entirely. Showing a graph overview, and then allowing the
user to filter it is in line with Shneiderman’s mantra [47].

4.5 Input and Output Samples

As described in the property analysis of Section 3, input and
output samples may, for some networks, be helpful. Directly
integrating such samples would, however, require the user
to provide training or testing data, and thus interfere with
the automatic nature of our visualization design. We thus
propose not to include them directly in any programmatic
CNN architecture visualizer. Instead, we suggest to option-
ally provide placeholders for input and output samples
which users can replace during post-processing with actual
samples.

5 VISUALIZATION OF LAYER PROPERTIES

In the following, we describe the design space dimensions of
the visual layer encoding we propose based on the design
discussion presented in Section 3, in other words, how to visu-
alize layer properties. Our visualization design supports the
direct encoding of layer type, spatial resolution, and the num-
ber of feature channels. By reducing the visualization space to
these three variables, we are able to encode all of them in sim-
ple glyphs that represent the layers of the network architec-
ture to be visualized. For the spatial resolution and the
number of feature channels, percentages only consider the
464 visualizations that contain convolutional layers, as we
explicitly tailored our glyph design to work well for CNNs.

5.1 Layer Type

The design space dimension for the layer type can take the
representations of textual display, color-coding, and shape-
encoding. Most visualizations only use textual descriptions
(52.7 percent), or text along with glyph color (14.6 percent)
to convey layer types. However, it can be repetitive to
encode the layer type as text below each layer. We, thus,
propose to provide this textual encoding optionally
(see Fig. 6) while not being displayed in the default setting.
The layer type is a categorical attribute and consequently
best visualized using a channel that is optimized for such
data [36], [48]. In Mackinlay’s ranking [41], color ranks just

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

2986
8

s > N 1IN 5 5 l8a22208(2
LER 2 2 ® 128 ¥ 128 ¥ 128 &
Q10 64 O 64 O 64 N N o =
[e)] (o)) [e)] [o)] (o] o] oo

%)

bt

InputLayer Conv2D MaxPooling2D

Fig. 5. Accessible encoding of the layer type to also support readers with
monochromatic vision and publications without color.

behind position, which we already employ to communicate
the data flow of the network. Perception research also
shows that color is a visually dominant channel [49]. Thus,
we propose to use a color encoding to convey the layer
types in the visualized network.

Color Assignment. In our approach, colors for new layers
are automatically preset in accordance to one of two alterna-
tive approaches. The first approach is motivated by farthest
point sampling. It finds unused colors in hsv color space by
searching for the biggest gap between any two hue values
of already used colors. This is the most functional approach,
as it optimizes for color difference. Unfortunately, it might
result in colors that are indistinguishable by color-blind
users and unpleasant color choices. Therefore, the second
option for color proposition is palette-based and serves as
the default. We suggest to use two color palettes, one from
materialuicolors [50] for visually pleasing color mappings,
and one adapted to users with trichromatic or dichromatic
vision [51]. Additionally, visualization designers should
always be able to customize the color that is used to encode
a layer type.

To also make our visualizations accessible to readers with
monochromatic vision, and support publications without
colored images, we also propose a texture-based encoding of
layer types, see Fig. 5. We provide twelve distinguishable
patterns that can be extended upon when needed.

Legend Generation. Since we use color-coding to differenti-
ate between layer types, a legend that maps these color
codes back to layer names is needed. This legend contains a
glyph for each layer type in the network and displays the
name of its layer as shown in Fig. 4. Based on expert feed-
back, legend items are sorted from simple to complex. This
complexity is determined by analyzing the dependency-tree
of aggregations, whereas nested aggregations are seen as
more complex.

5.2 Spatial Resolution

The spatial resolution is a design space dimension that
might be represented by glyph height, glyph width, glyph
color, and textual annotations. As the spatial resolution is a
quantitative and sequential variable, length, angle, slope,
and area are the best remaining options for encoding it [41],
[42], [52]. In some visualizations, the spatial resolution is
represented by the shape of the layer glyph in combination
with textual information (10.8 percent) or just textual repre-
sentations (10.1 percent). However, mostly only glyph
shape (32.8 percent) is used. We propose to use height in
combination with text as a direct mapping of the spatial

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 6, JUNE 2021

0EX0EX0E
STXSTXST

16 512 10

Conv3D Flatten Dense

Conv3D Flatten Dense

Fig. 6. Net2Vis can also be used to generate visualizations of multi-
dimensional network architectures.

resolution, as this does not interfere with our network lay-
out and can be encoded in the glyph design directly.

However, not all visualizations map glyph height in the
same way. Sometimes the height of the downsampling layer
already encodes the changed resolution, while in other visu-
alizations, the next layer is first affected by this change. This
ambiguity makes the interpretation of such visualizations
hard, as one needs to determine which representation was
chosen for each visualization approach. Furthermore, the
transformation of the resolution is determined by multiple
parameters (e.g., stride, kernel size, padding). Thus, the out-
put resolution is a result of the inner working of a layer rather
than a fixed parameter. We, therefore, propose to visualize
the spatial resolution as a change within the layer. To convey
the underlying transformation, we set the height on the left
edge of the glyph to match the input resolution, while the
height on the right edge of the glyph reflects the output reso-
lution, resulting in trapezoid-shaped glyphs, as shown
in Fig. 3b. This conveys the change of resolution as a result of
the mathematical operations within the layer while at the
same time removing its ambiguity. In addition, with this
encoding, the relation of input and output dimension from
layer to layer as well as across the whole network is clearly
visible by horizontally scanning the visualization [53].

To draw these glyph shapes, in our approach visualiza-
tion designers can define a minimal and maximal height for
the glyphs. We then obtain the spatial resolution for the
input and output tensors for each layer. The highest and
lowest value of all spatial extents gets mapped to the
extremes of the user-defined height values. Values between
these extremes are interpolated linearly to convey the actual
spatial resolution for the input and output of each layer in
the network. Using these interpolations, each input and out-
put of every layer gets a height value assigned, which maps
this important quantitative variable to the vertical length of
the glyph ends, as Mackinlay’s ranking suggests [41], [52].

We found that it is mostly not important to convey the
exact spatial resolution by means of textual descriptions, as
only 20.9 percent do so. Since many modern architectures
further allow inputs to be arbitrarily shaped, e.g., [3], [7],
[54], the spatial dimension is not necessarily fixed at any
given layer for many network architectures. We, therefore,
advocate for the option to toggle labels that display the
exact spatial resolution between the layers, following our
visualization design, in which the resolution is fixed
between layers but changes within them.

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

BAUERLE ET AL.: NET2VIS — A VISUAL GRAMMAR FOR AUTOMATICALLY GENERATING PUBLICATION-TAILORED CNN...

5.3 Feature Channels

Similar to the spatial resolution, feature channels may be rep-
resented by glyph height, glyph width, glyph color, and tex-
tual annotations. Textual descriptions (20.0 percent), glyph
shapes (13.8 percent), or a combination of both (9.1 percent)
are common for conveying the number of feature channels.
The number of feature channels, just as the spatial resolution,
represents the important transformation into or from latent
space, tightly coupling these two variables. Thus, we pro-
pose to employ a similar visual encoding to convey them,
again, mapping a perceptually preferable length parameter,
in this case, glyph width, to this variable [41], [43]. Feature
channels are different from the spatial resolution in that they
are fixed properties of a layer and not derived from the previ-
ous dimensions. We, therefore, propose to visualize this vari-
able as a direct property of the layer rather than a change
within it. In our approach, the number of feature channels
can additionally be represented as text, displayed below
each layer.

While the spatial resolution and its change within a layer
is represented by the heights at both ends of the layer glyph,
combining this representation with the number of feature
channels as encoded in the glyph width can reveal impor-
tant overall information on the processed data. Together,
they present the total amount of data that is processed by
the layer. In our visualization design, this amount of data is
implicitly encoded in the area covered by the glyph.

Accordingly, with this glyph design, variable importance
is perfectly aligned with Mackinley’s ranking [41], [42], [53].
At the same time, these glyph shapes fit nicely into the hori-
zontal network layout.

Dense layers only have one intrinsically specified dimen-
sion of data. Since this is a fixed dimensionality, it is more
similar to feature channels than the spatial resolution. Addi-
tionally, dense layers are one-dimensional and commonly
visualized as vertical chains of neurons. Thus, for dense
layers, the number of neurons is also mapped to the glyph
height. Additionally, for better differentiation of these sim-
pler layer types, we also propose to employ a simpler color-
coding, using the same color for the border as well as for
the body of the glyph.

For all of these visual encodings, we propose default
specifications, such as minimal and maximal width and
height of layer glyphs, which can be customized by the user.

6 EVALUATION

To evaluate the proposed concepts, we have visualized
multiple well-known architectures with our techniques,
gathered expert feedback to inform and evaluate our visu-
alization design, and conducted a quantitative user study.

6.1 Application Examples

To provide the community with means to incorporate our
visual encoding, we implemented Net2Vis as an online
application which is available at https://viscom.net2vis.
uni-ulm.de. Here, users can paste Keras code to obtain
ready-to-use architecture visualizations and download
those as PDF figures for direct use in publications, as well
as SVG images, which can be edited in hindsight. To dem-
onstrate Net2Vis’ capabilities, we applied it to several

2987

commonly used network architectures. Fig. 1 shows a vari-
ation of U-Net [55] which is frequently used for semantic
segmentation. Fig. 4 shows a visualization of ResNet [56]
where we show a reduction from 177 to just 21 glyphs
through our aggregation techniques. Finally, in Fig. 6, we
demonstrate that we also support multi-dimensional net-
work architectures. Even more application examples where
we show that our techniques can even visualize networks
such as InceptionV3 [57] can be found in our supplementary
material, available online. Here we show popular published
neural network architectures [1], [6], [55], [56], [57], [58],
[59], [60], [61], [62], [63], and two network visualizations we
used for our own publications and presentations.

6.2 Comparison to TensorBoard

TensorBoards graph visualization is based on the computa-
tion graph as defined in the program code for the network
architecture. Aggregations in the graph visualizer can, thus,
only be made for those nodes that contain sub-nodes. This
can provide more detail as every operation in the graph
can be examined. However, TensorBoard’s aggregation
approach is far less flexible and not tailored towards publica-
tion figures. For publication visualizations, users typically
want arbitrary aggregations of multiple layers without hav-
ing to specify parent nodes for those in the code first. Our
flexible graph-based aggregation methods support that exact
need, in that they allow for tailoring aggregations in a way
that best communicates the overall architectural ideas. This
also leads to much smaller and easier to understand figures,
which we will elaborate more on in the following evaluations.

6.3 Expert Interviews

After the implementation of the first version of Net2Vis was
complete, we conducted qualitative interviews with experi-
enced machine learning researchers.

Expert Selection. We used Net2Vis to generate replications
of visualizations from published papers. These visualiza-
tions were then emailed together with our questionnaire to
the authors of the respective papers (in the following
referred to as experts). In total, we contacted 7 experts in
this manner who had novel papers or high citation count
and published at different conferences.

Three of those answered our questions, one replied to
have other obligations, and three did not get back to us.
Two of the papers from which the respective experts gave
feedback are highly cited (i.e., Noh et al. [1]: > 2300 and
Long et al. [6]: > 14000), the third is a more recent publica-
tion from 2018 [59].

Questionnaire. Our questions were designed following
Munzner’s nested evaluation model [64]. Thus, we
assessed the need for such automatic visualizations (Q1,
Q5), analyzing the threat of targeting a wrong problem.
We also investigated why 3D visualizations are so common
(Q3), and asked about our visualization design (Q2, Q4) to
evaluate the abstraction and encoding technique, which
are the second and third possible pitfalls [64]. Our imple-
mentation proves interactivity, the fourth possible visuali-
zation pitfall [64].

We intentionally asked only five questions to keep the
time needed to answer our survey relatively low, and thus

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

2988

maximize the chance for responses from these well-known
researchers.

However, we encouraged the experts to add any com-
ments to their replies.

Feedback. All replies were positive and emphasized the
importance of such automatic visualizations. Furthermore,
they gave positive feedback on our glyph and graph design.
Their main concerns were scalability to different architec-
tures since they only received visualizations for their
papers. However, as can be seen in Section 6.1 as well as the
supplementary material, available online, Net2Vis is desi-
gned to work with a wide variety and high complexity of
convolutional neural networks.

Q1: How Much Time Did You Spend Creating Your Figure?
All experts stated that creating figures of their architecture
took too much time. While initial versions seemed to take
about one hour on average, they all noted that they needed
multiple iterations.

This supports our claim that this task can be greatly opti-
mized as it takes valuable research and paper-writing time
from the experts.

Q2: How Do You Understand the Mapping of Number of Fea-
ture Channels and Spatial Resolution in the Visualizations We
Sent You? All three responded that they understand that
and how the spatial dimension and feature channels are
mapped onto the glyphs correctly. Thus, the mapping of
spatial dimension and feature channels seems comprehensi-
ble even though this representation is more abstract than
the ones used in their papers.

Q3: Why Did You Pick a 3D Visualization for the Layers and
Which Information Did You Want to Convey? All experts said
this was done since the data was three-dimensional. None
of them conveyed additional information this way. One
expert also admitted that 3D visualizations introduce the
problem that layers cannot always be evenly spaced
because of occlusion.

All three also noted that this makes the visualization
more complex. Our choice of visualizing the network archi-
tecture in 2D was preferred also by these experts.

Q4: What Do You Think of Visualizing The Transformation
That Happens During Pooling/Unpooling as a Transformation
of the Layer Itself (Trapezoid Glyphs) Rather Than In-Between?
One expert said I found many people complained about not
drawing in-between relation between pooling/unpooling, which
indicates that this implicit transformation used in the exist-
ing visualizations is confusing to the reader. Another
expert mentioned that the trapezoids seem like a nicely simple
way to indicate where and how much downsampling is going on.
However, he also noted that this is dual to the way Alex-
Net visualizes network architectures which has been
picked up by many researchers. While it is a valid concern
in that readers have to differentiate between these
approaches, we think that the mentioned benefits outweigh
the downsides which naturally come with adopting a new
visualization approach.

Q5: Would You Use Such a Tool For Your Projects, if Avail-
able? All experts agreed that they would be users of network
visualization generators as proposed in this paper. One
expert additionally mentioned that he would still want to
have the possibility to modify the visualization to his will
which he did not know is possible in Net2Vis.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 6, JUNE 2021

Other remarkable comments that clearly show the need
for such automatic visualizations were: I have been ranting
about this for a while and have been waiting for somebody to ask,
and I've been hoping someone would make better automatic visu-
alization toolkits for a while.

Based on the comments and free-form texts within the
expert feedback, we further refined our visualization
design, e.g., by visually separating groups from standard
layers through different border styles or increased vertical
spacing between parallel execution steps.

6.4 Quantitative User Study

To evaluate our final visualization design, we then con-
ducted a quantitative study with 10 participants (3 female,
7 male, M4 =259 SD =2.27).

These participants were recruited in a university setting.
Requirements for participation were that the participants
knew what a CNN is, knew what elements CNNs consist of,
and knew about feature- and spatial dimensions. Machine
learning expertise of the participants varied between less
than half a year and less than five years, which nicely
reflects the broad audience which we expect for our visuali-
zation design. Based on internal piloting, we found that our
study takes participants around an hour to complete. We
compensated them with a 10 Euro Amazon gift card.

Methods. The participants were presented with different
well-known machine learning architectures. Each of these
architectures was visualized using three different visualiza-
tion approaches, Net2Vis , TensorBoard, and a visualization
taken from the original publication. We implemented the
network architectures for each paper in Keras, which
enabled us to directly export visualizations using Net2Vis.
For TensorBoard, we had to manually screenshot and stitch
the visualizations as the export functionality in TensorBoard
did not work for us. For each visualization, participants had
to answer eight questions by extracting information about
the architecture. These questions included the following
tasks: How many convolutional layers does this architecture con-
tain?, What is the maximal feature depth for the convolutional
part?, What is the minimal spatial resolution of the convolutional
part?, What are the input dimensions for this network?, What
arelis the output dimension(s) of this network?, How many times
does downsampling happen in this network?, How many steps are
performed to increase the feature dimension?, Is this Architecture
“Fully Convolutional”?. Participants entered the answers to
these questions into a text field and were instructed to
answer -1 if they could not extract the information from the
visualization. Each participant was presented with every
network architecture (6) using all three visualization techni-
ques (3), resulting in 18 stimuli presented in a randomized
order. Afterward, participants were presented with each
architecture using all three visualization techniques, side by
side, and were asked three comparison questions: Which of
the above visualizations contains the most useful information?,
Which of the above visualizations was easiest to interpret?, and
Which of the above visualizations did you find most visually
appealing?.

Analysis. To analyze the performance of the different
visualization approaches, we computed the mean accuracy
over all eight questions for each of the presented

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

BAUERLE ET AL.: NET2VIS — A VISUAL GRAMMAR FOR AUTOMATICALLY GENERATING PUBLICATION-TAILORED CNN...

100

80

60

accuracy (%)
>

201

T T T
net2vis orig tensorboard

Fig. 7. This plot shows a comparison of accuracies for each condition.
Accuracies are the mean of all eight questions asked for each network.
For Net2Vis, the median is the same as the upper IQR. One can see
that our approach led to the best accuracy, even though the other
approaches contained questions that participants did not even need to
answer. We additionally found significant differences between Tensor-
Board and the other two conditions, indicating that TensorBoard is the
worst approach of the three for an abstract display of network
architectures.

architectures for each condition (Net2Vis versus Tensor-
Board versus handcrafted), as can be seen in Fig. 7. We
compared these conditions using Friedman ANOVA and
found a significant difference in accuracy for the visual-
izations drawn using Net2Vis (M = 83.75 percent, SD =
12.02 percent) when compared to the handcrafted (M =
75.83 percent, SD = 15.75 percent), and TensorBoard
(M = 63.13 percent, SD = 17.29 percent), x*(2) = 38.75,p <
.001. During post-hoc analysis using Nemenyi’'s test, we
found a significant difference between Net2Vis and Tensor-
Board (p =.001), as well as TensorBoard and the handcrafted
version (p = .001). While the accuracy for Net2Vis was higher
compared to the handcrafted version, we could not find a
significant effect between these conditions (p = .11). When
analyzing the time our participants took to complete all
eight questions for each visualization, we found a significant
effect between our conditions. As with accuracy, Tensor-
Board showed the worst performance (M = 27.1s, SD =
30s), followed by Net2Vis (M = 16.98s, SD = 15sec), and the
handcrafted version (M = 13.53s, SD = 8.95s), x*(2) = 17.1,
p < .001. During post-hoc analysis, we found this effect to
be significant between TensorBoard versus Net2Vis (p <
.05), and TensorBoard versus handcrafted (p < .001). How-
ever, when comparing Net2Vis and the handcrafted version,
we could not find a significant effect between these condi-
tions (p = .23).

For the questionnaire about which visualization tech-
nique our participants would prefer with respect to infor-
mativeness, interpretability, and design, our technique
outperformed the other conditions again. For informative-
ness, participants preferred our approach in 86.6 percent of
cases, while they favored the original version in 13.3 percent
of cases. The interpretability of our design was ranked
highest as well, as in 75 percent of all cases, our approach
was favored, whereas the original versions were favored in
25 percent of cases. The design of our approach was favored
in 70 percent of all cases, against 30 percent in favor of the
original visualization. Looking at the individual networks,
our approach was rated better or evenly good in all condi-
tions except for the design of U-Net, where 60 percent
favored U-Net. Remarkably, across all six conditions and

2989

all ten participants, TensorBoard did not get voted as pre-
ferable once. Used visualizations, plots, and raw study data
can be found in our supplementary material, available
online.

6.5 Usability Evaluation

In another evaluation with 16 participants (13 male, 1 female,
2 did not report, M, = 28.06 SD = 4.23), we also evaluated
our approach from the view of a visualization designer.
These participants took part in our study right after a one-
week full-time deep learning course, where we recruited
the participants. Thus, they were familiar with the underly-
ing concepts. Participants were given a brief introduction
to Net2Vis before they had the chance to visualize one of
their own architectures. Then, they filled a questionnaire
regarding the system, including a system usability scale
questionnaire (SUS), and a demographic questionnaire. The
usability analysis through the SUS questionnaire resulted in
a mean score of 83.44 points (SD = 6.25) indicating excellent
usability [65].

6.6 Discussion

The main goal of Net2Vis was to introduce a unified design
for neural network architectures as a replacement for
handcrafted visualizations. While we could not find a sig-
nificant effect between Net2Vis and the handcrafted ver-
sion during our quantitative user study, we still argue that
our approach outperforms the handcrafted versions in
some ways. While not significant, Net2Vis showed overall
higher accuracies, which might indicate that the effect
between the conditions would become significant, given a
larger number of participants. Furthermore, we saw higher
accuracies in key aspects of these types of visualizations,
particularly in the direct comparisons such as interpret-
ability and design of the visualization. Besides that, for the
TensorBoard visualizations and original paper figures not
all information needed for answering the questions was
always present during our quantitative user study. In such
cases, users could answer with -1 whenever information
was not available. Thus, in these cases, users could not
give a wrong answer. We still counted these answers in
our evaluation, essentially putting our approach at a disad-
vantage. Nonetheless, our techniques outperformed the
others in almost all metrics. Compared to the original
paper figures, which ranked better than TensorBoard, our
approach has the additional advantage of a unified design
and automation, which can save time and makes knowl-
edge transfer possible.

Referring back to the nested model of evaluating visuali-
zation design [64], first, our evaluation indicates that we
indeed work on a relevant problem for our target users.
Moreover, the abstraction level we chose seems to be appro-
priate as supported by our quantitative user study. Our
expert interviews clarified that it is important to keep such
visualizations simple and minimalist as none of the experts
complained about missing information in our visualiza-
tions. One expert even explicitly stated that it is important
to emphasize function and architecture especially over obtuse
prettiness that you see in many of the tools that visualize activa-
tions or things like layer gradients. Third, the evaluation of our

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

2990

expert interviews, as well as the quantitative study, suggest
that our glyph design is easily interpretable and adds valu-
able information as it directly visualizes the transformation
of data. Fourth, the interactivity of our implementation
shows that we do not have a problem with the speed of the
algorithm. The results of our quantitative user study sup-
port this, with an excellent usability score for our system.
While this evaluation is only a first indication of the applica-
bility of Net2Visand only adoption of the concepts in the
field can prove its value, the evaluation clearly supports the
need for such a tool as well as our design choices.

7 CONCLUSION

In this paper, we propose a visualization design for com-
municating neural network architectures which is based
on expert feedback, state of the art visualizations, and
user studies. Additionally, we provide an automated
approach for visualizing CNN architectures and release a
data set which contains an analysis of 751 paper figures of
neural network architectures from all CVPR and ICCV
conference papers since 2013. Currently, such visualiza-
tions are mostly handcrafted which consumes time in the
paper writing process. Our novel visual grammar for
visualizing CNNs, called Net2Vis, is informed by an anal-
ysis of the current practice, expert feedback, as well as
widely accepted data visualization guidelines. Our pro-
posed visual grammar incorporates visualization require-
ments for neural network architecture visualization,
network layout, aggregation, legend generation, and a
novel glyph design. Net2Vis represents the first visualiza-
tion technique for modern and complex CNNss that is tai-
lored towards use in publications, while the results of our
quantitative user study indicate that Net2Vis improves
both visualization generation and reading. For wide
adoption, Net2Vis can be used as an online service at
https:/ /viscom.net2vis.uni-ulm.de, where wusers can
obtain CNN architecture visualizations tailored towards
use in publications directly from their Keras code.

ACKNOWLEDGMENTS

This work was supported by the Carl-Zeiss Scholarship for
Ph.D. students.

REFERENCES

[1] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1520-1528.

[2] D. Teney and M. Hebert, “Learning to extract motion from videos
in convolutional neural networks,” in Proc. Asian Conf. Comput.
Vis., 2016, pp. 412-428.

[3] H.Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super slomo: High quality estimation of multiple inter-
mediate frames for video interpolation,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 9000-9008.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 12, pp. 2481-2495, Dec. 2017.

[5] G.Strezoski and M. Worring, “Plug-and-play interactive deep net-
work visualization,” Proc. Vis. Anal. Deep Learn., 2017, pp. 100-106.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 3431-3440.

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

[31]
[32]

[33]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 6, JUNE 2021

O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P. Seidel, and T. Ritschel,
“Deep shading: Convolutional neural networks for screen space shad-
ing,” Comput. Graph. Forum, vol. 36, no. 4, pp. 65-78, 2017.

P. Henzler, V. Rasche, T. Ropinski, and T. Ritschel, “Single-
image tomography: 3D volumes from 2D cranial x-rays,” Com-
put. Graph. Forum, vol. 37, no. 2, pp. 377-388, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.13369

M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2016, pp. 265-283.

K. Wongsuphasawat, “Visualizing dataflow graphs of deep learn-
ing models in tensorflow,” IEEE Trans. Vis. Comput. Graphics,
vol. 24, no. 1, pp. 1-12, Jan. 2018.

Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675-678.

D. Gschwend, “Netscope quickstart,” 2017. [Online]. Available:
http:/ /dgschwend.github.io/netscope/quickstart.html

F. Cholletet al., “Keras,” 2015. [Online]. Available: https:/ /keras.io
T. Gheorghiu, “Annvisualizer,” 2018. [Online]. Available: https://
github.com/Prodicode/ann-visualizer

L. Roeder, “Netron,” 2018. [Online]. Available: https://github.
com/lutzroeder/Netron

Q. Wang, J. Yuan, S. Chen, H. Su, H. Qu, and S. Liu, “Visual gene-
alogy of deep neural networks,” IEEE Trans. Vis. Comput. Graphics,
vol. 26, no. 11, pp. 3340-3352, Nov. 2020.

M. Crowe, “Neurovis,” 2018. [Online]. Available: http://
neurovis.mitchcrowe.com/

D. Smilkov, S. Carter, D. Sculley, F. B. Viégas, and M. Watten-
berg, “Direct-manipulation visualization of deep networks,”
CoRR, vol. abs/1708.03788, 2017. [Online]. Available: http://
arxiv.org/abs/1708.03788

A. W. Harley, “An interactive node-link visualization of convolu-
tional neural networks,” in Proc. Int. Symp. Vis. Comput., 2015,
pp. 867-877.

M. Kahng, N. Thorat, D. H. P. Chau, F. B. Viégas, and
M. Wattenberg, “GAN lab: Understanding complex deep genera-
tive models using interactive visual experimentation,” IEEE Trans.
Vis. Comput. Graphics, vol. 25, no. 1, pp. 310-320, Jan. 2019.

M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu, “Analyzing the training
processes of deep generative models,” IEEE Trans. Vis. Comput.
Graphics, vol. 24, no. 1, pp. 77-87, Jan. 2018.

M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better anal-
ysis of deep convolutional neural networks,” IEEE Trans. Vis.
Comput. Graphics, vol. 23, no. 1, pp. 91-100, Jan. 2017.

H. Zeng, H. Haleem, X. Plantaz, N. Cao, and H. Qu, “CNNcom-
parator: Comparative analytics of convolutional neural net-
works,” 2017, arXiv : 1710.05285.

D. Bruckner, “Ml-o-scope: A diagnostic visualization system
for deep machine learning pipelines,” Dept. Elect. Eng. Comput.
Sci., Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2014-99, 2014.

M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau, “ActiVis:
Visual exploration of industry-scale deep neural network mod-
els,” IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 1, pp. 88-97,
Jan. 2018.

W. Ding, “Draw convnet,” 2018. [Online]. Available: https://
github.com/gwding/draw_convnet

Y. Uchida, “Convnet drawer,” 2019. [Online]. Available: https://
github.com/yu4u/convnet-drawer

A. Lenail, “Nn-svg,” 2018. [Online]. Available: https://github.
com/zfrenchee/NN-SVG

F. M. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual ana-
lytics in deep learning: An interrogative survey for the next fron-
tiers,” IEEE Trans. Vis. Comput. Graphics, vol. 25, no. 8, pp. 2674—
2693, Aug. 2018.

J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of
visual analytics techniques for machine learning,” Comput. Vis.
Media, vol. 7, no. 1, pp. 1-34, 2021.

Scrapinghub, “scrapy,” 2020. [Online]. Available: https:/ /scrapy.
org/

PyPDF2, “Pypdf2,” 2020. [Online]. Available: https://github.
com/mstamy2/PyPDF2

C. Clark and S. Divvala, “PDFFigures 2.0: Mining figures from
research papers,” in Proc. IEEE/ACM Joint Conf. Digital Libraries,
2016, pp. 143-152.

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

BAUERLE ET AL.: NET2VIS — A VISUAL GRAMMAR FOR AUTOMATICALLY GENERATING PUBLICATION-TAILORED CNN...

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

N. Elmqvist and J.-D. Fekete, “Hierarchical aggregation for
information visualization: Overview, techniques, and design
guidelines,” IEEE Trans. Vis. Comput. Graphics, vol. 16, no. 3,
pp. 439-454, May /Jun. 2010.

H. Shi, J. Dong, W. Wang, Y. Qian, and X. Zhang, “SSGAN: Secure
steganography based on generative adversarial networks,” in
Proc. Pacific Rim Conf. Multimedia, 2017, pp. 534-544.

T. Munzner, Visualization Analysis and Design. Natick, MA, USA/
Boca Raton, FL, USA: AK Peters/CRC Press, 2014.

M. St. John, M. B. Cowen, H. S. Smallman, and H. M. Oonk, “The
use of 2D and 3D displays for shape-understanding versus rela-
tive-position tasks,” Hum. Factors, vol. 43, no. 1, pp. 79-98, 2001.
A. Cockburn and B. McKenzie, “An evaluation of cone trees,” in
People and Computers XIV-Usability or Else! Berlin, Germany:
Springer, 2000, pp. 425-436.

M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner,
“Timelines revisited: A design space and considerations for
expressive storytelling,” IEEE Trans. Vis. Comput. Graphics, vol. 23,
no. 9, pp. 2151-2164, Sep. 2017.

C. Felix, S. Franconeri, and E. Bertini, “Taking word clouds apart:
An empirical investigation of the design space for keyword sum-
maries,” IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 1, pp. 657—
666, Jan. 2018.

J. Mackinlay, “Automating the design of graphical presentations
of relational information,” ACM Trans. Graph., vol. 5, no. 2, pp.
110-141, 1986.

M. Causse and C. Hurter, “The physiological user’s response as a
clue to assess visual variables effectiveness,” in Proc. Int. Conf.
Hum. Centered Des., 2009, pp. 167-176.

J. Heer and M. Bostock, “Crowdsourcing graphical perception:
Using mechanical turk to assess visualization design,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2010, pp. 203-212.

E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo, “A tech-
nique for drawing directed graphs,” IEEE Trans. Softw. Eng.,
vol. 19, no. 3, pp. 214-230, Mar. 1993.

M. J. Proulx and H. E. Egeth, “Biased competition and visual
search: The role of luminance and size contrast,” Psychol. Res., vol.
72,no. 1, pp. 106-113, 2008.

M. J. Proulx, “Size matters: Large objects capture attention in
visual search,” PloS One, vol. 5, no. 12,2010, Art. no. €15293.

B. Shneiderman, “The eyes have it: A task by data type taxonomy
for information visualizations,” in The Craft of Information Visuali-
zation. Berlin, Germany: Elsevier, 2003, pp. 364-371.

C. Ware, Information Visualization: Perception for Design. Berlin,
Germany: Elsevier, 2012.

R. E. Christ, “Review and analysis of color coding research for
visual displays,” Hum. Factors, vol. 17, no. 6, pp. 542-570, 1975.

P. Network, “materialuicolors,” 2018. [Online]. Available:
https:/ /materialuicolors.co

B. Wong, “Points of view: Color blindness,” Nat. Methods, vol. 8,
2011, Art. no. 441.

W. S. Cleveland and R. McGill, “Graphical perception: Theory,
experimentation, and application to the development of graphical
methods,” |. Amer. Statist. Assoc., vol. 79, no. 387, pp. 531-554,
1984.

Y. Kim and J. Heer, “Assessing effects of task and data distribu-
tion on the effectiveness of visual encodings,” Comput. Graph.
Forum, vol. 37, no. 3, pp. 157-167, 2018.

Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point
cloud based 3D object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 4490-4499.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Int. Conf.
Med. Image Comput. Comput.-Assisted Interv., 2015, pp. 234-241.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

C. Szegedy, V. Vanhoucke, S. Ioffe,]. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2818-2826.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

2991

A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http:/ /arxiv.org/abs/1704.04861

J. Ott, A. Atchison, P. Harnack, A. Bergh, and E. Linstead, “A deep
learning approach to identifying source code in images and vid-
eo,” in Proc. IEEE[/ACM 15th Int. Conf. Mining Softw. Repositories,
2018, pp. 376-386.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. 3rd Int. Conf.
Learn. Representations, 2015. [Online]. Available: http://arxiv.org/
abs/1409.1556

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-
storm: Super-resolution single-molecule microscopy by deep
learning,” Optica, vol. 5, no. 4, pp. 458-464, 2018.

G. Urban et al., “Deep learning for drug discovery and cancer
research: Automated analysis of vascularization images,” IEEE/
ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 3, pp. 1029-1035,
May/Jun. 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in
deep residual networks,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 630-645.

T. Munzner, “A nested model for visualization design and val-
idation,” IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 6,
pp. 921-928, Nov./Dec. 2009.

A. Bangor, P. Kortum, and J. Miller, “Determining what individ-
ual sus scores mean: Adding an adjective rating scale,”]. Usability
Stud., vol. 4, no. 3, pp. 114-123, 2009.

Alex Bauerle received the master’'s degree in
media informatics from Ulm University, in
2017. He is currently working as a research
associate with the Visual Computing Group at
Ulm University. His current research interests
include visualization of neural networks to gen-
erate better understanding and tooling around
these techniques.

Christian van Onzenoodt received the master’s
degree in media informatics from Ulm University,
in 2017. He is currently working as a research
associate with the Visual Computing Group at
Ulm University. His current research interests
include information visualization with a focus on
the perception of visualizations.

Timo Ropinski received the PhD degree in com-
puter science, in 2004, and the Habilitation
degree, in 2009, both from the University of
Munster. He is currently a professor with Ulm
University, where he is heading the Visual Com-
puting Group. Before moving to Ulm he was pro-
fessor in Interactive Visualization at Linkoping
University, in Sweden, where he was heading the
Scientific Visualization Group.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: KIZ Abt Literaturverwaltung. Downloaded on May 18,2021 at 11:38:12 UTC from IEEE Xplore. Restrictions apply.

EXPLORNN: UNDERSTANDING RECURRENT
NEURAL NETWORKS THROUGH VISUAL
EXPLORATION

Alex Béauerle, Patrick Albus, Raphael Stork, Tina Seufert, and Timo
Ropinski. “exploRNN: Understanding Recurrent Neural Networks
through Visual Exploration.” In: The Visual Computer (2022)

This work is published under the terms of the Creative Commons
Attribution 4.0 License (CC BY 4.0), https://creativecommons.org/
licenses/by/4.0/

75

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

The Visual Computer
https://doi.org/10.1007/s00371-022-02593-0

ORIGINAL ARTICLE r')

Check for
updates

exploRNN: teaching recurrent neural networks through visual
exploration

Alex Bauerle'® - Patrick Albus’ - Raphael Stork® - Tina Seufert! - Timo Ropinski’

Accepted: 10 June 2022
© The Author(s) 2022

Abstract

Due to the success and growing job market of deep learning (DL), students and researchers from many areas are interested
in learning about DL technologies. Visualization has been used as a modern medium during this learning process. However,
despite the fact that sequential data tasks, such as text and function analysis, are at the forefront of DL research, there does
not yet exist an educational visualization that covers recurrent neural networks (RNNs). Additionally, the benefits and trade-
offs between using visualization environments and conventional learning material for DL have not yet been evaluated. To
address these gaps, we propose exploRNN, the first interactively explorable educational visualization for RNNs. exploRNNis
accessible online and provides an overview of the training process of RNNs at a coarse level, as well as detailed tools for the
inspection of data flow within LSTM cells. In an empirical between-subjects study with 37 participants, we investigate the
learning outcomes and cognitive load of exploRNN compared to a classic text-based learning environment. While learners
in the text group are ahead in superficial knowledge acquisition, exploRNN is particularly helpful for deeper understanding.
Additionally, learning with exploRNN is perceived as significantly easier and causes less extraneous load. In conclusion,
for difficult learning material, such as neural networks that require deep understanding, interactive visualizations such as

exploRNN can be helpful.

Keywords Neural network education - Recurrent neural networks - Sequential data - Visual education

1 Introduction

With its recent advances, DL has gained immense traction
in research, industry, and education. As job opportunities
related to machine learning are unprecedented, many want
to learn about and understand DL technologies.

While initial progress in DL was mainly possible due to the
rise of convolutional neural networks (CNNG5), large training
data sets, and GPU training in the context of image recogni-
tion [1-3], other network architectures, such as RNNs, which
are able to process sequential data, are becoming increas-
ingly important. At the same time, these more advanced
learning architectures are more difficult to comprehend, as
they employ concepts that are fundamentally different from
classical computer science. Thus, by making the process
behind RNNs transparent and easy to understand, research

Alex Biuerle
alex@al3x.io

' Ulm University, Ulm, Germany

Published online: 14 July 2022

in sequential learning tasks can be accelerated as the field
opens up to additional users and contributors.

Along this line, the visualization community has shown
how interactive visual explorables can be effective for learn-
ing about DL concepts [4-7]. Since different architectures
come with their unique challenges, existing educational
applications usually focus on one type of architecture. Unfor-
tunately, the set of existing applications still does not cover
RNNG. This is despite the fact that RNNs are widely adopted
in tasks such as speech processing [8,9], handwriting recogni-
tion [10], and machine translation [11], among many others.
While RNNs are capable of solving such sequential tasks,
they also bring their unique architectures and concepts to
capture temporal information. As these concepts differ from
other network types, RNN education could be of great ben-
efit. To facilitate RNN education, we propose exploRNN,
an interactive explorable visualization for RNNs that runs
directly in any modern web browser (Fig. 1).

The focus of exploRNN is to make learning about these
abstract and complex network types easier, more motivat-
ing, and more applicable to real problems. By presenting

@ Springer

A. Bauerle et al.

exploRNN

Function Data ~

Network (©

[© reserinTRO

Prediction O

/ | ‘
___________________________ L/ il !
[\ \ J ‘ ‘
] I \ { Prediction
1 | -
/ Ta

Forward (i
Data s shown to the network value by value to build up the internal state. After a fixed number of data points has been
processed, the network can make a prediction on how this sample would continue.

Validation (0
The predicted values are compared to the correct values (ground truth) from the training dataset. The difference is used
to calculate the loss.

Backward (i
The calculated loss is backpropagated through the network as well as through time (reverting the input timesteps), to
find out where the prediction error came from and update the network variables for the next teration.

Fig. 1 a Simple input types illustrate the abstract concepts behind
RNNSs. b An animated, modifiable network architecture shows the data
flow. ¢ The prediction visualization shows the network input, predic-
tion, ground truth, and error bars, all animated to communicate their

learning material in a way that is conducive to learning, learn-
ers should need fewer unnecessary cognitive resources
[12]. These freed-up resources are then available to be used
for a deeper understanding of the learning material.
We also expect that this would result in a more motivating
and joyful learning experience compared to traditional
learning methods, such as text. In turn, learners might be will-
ing to spend more time learning, and more learners could be
attracted in general, effectively increasing overall knowledge
gain. To assess these hypotheses, we compare exploRNN with
text-based learning in a between-subjects study with 37 par-
ticipants. Our evaluation provides insights into when, and
under which conditions, visual interactive learning environ-
ments can outperform conventional learning material.
Along this line, we make the following contributions:

e Educational Objectives and Design Challenges for edu-
cational RNN visualizations, informing our visualization
design.

e An interactive visualization approach for RNN educa-
tion, enabling investigation at different levels of granu-
larity.

e A quantitative, comparative evaluation, investigating the
effectiveness of our approach and providing hints for
other interactive educational visualizations.

exploRNN can be accessed online at: https://mi-pages.
informatik.uni-ulm.de/explornn, contributing to a fast-growing
corpus of visualization work in the field of DL. To our

@ Springer

Epochs @

A random tgelement of the dataset
is shown for each epoch.

Learning Rate (i

0.0001 0.001 0.01 01 1

Batch Size (i

5 25 50

Noise (i

0.0 0.2 0.4

temporal nature. d Text helps explain the training process. ¢ RNNs
can be interactively trained. f Training parameters can be interactively
explored

knowledge, exploRNN is the first educational visualization
interface that is targeted at RNNs, an important and growing
class of neural networks (NN). Additionally, our study is the
first to compare conventional learning material to a visual,
interactive learning environment for DL education.

2 Background: RNNs

We would like to invite readers who want to refresh their
knowledge on RNNs to use exploRNN at https://mi-pages.
informatik.uni-ulm.de/explornn as an interactive learning
experiment. This chapter contains a brief summary of the
knowledge that is communicated in exploRNN.

CNNs and multi-layer perceptrons (MLPs), which are
used for most classical DL tasks, process data in a feed-
forward manner. On the contrary, RNNs provide a cyclical
architecture in which the output of the previous timestep is
used in combination with new inputs to inform the activation
of a cell. The main difference in training RNNs is backprop-
agation through time (BPTT), where the prediction error is
propagated not only back through the layers but also within
the recurrent connections of the layers.

We visualize the LSTM architecture (cf. Fig. 2). Although
this is not the most simple recurrent architecture that exists,
it is superior in capturing long-range dependencies, as it mit-
igates the vanishing gradient problem [13-15], and is thus
widely used. The main features of an LSTM cell are the gat-
ing mechanisms and the cell state. The three gates within an

exploRNN

Fig.2 LSTM cell with all operations visualized. The input is added to
the output of the previous time step and then used by the three gates for
the gate activation

LSTM cell are computed based on the input at time step ¢,
x" and the activation of the cell at time step 7 — 1, a’~! as
follows:

= Input Gate: i’ = sigmoid(Wixx' + Wiqua'~' + b;), what
new information to use to update the cell state c’.

& Forget Gate: f' = sigmoid(Wryx' + Wfaat_1 +by),
what information in the cell state ¢! can be forgotten.

5) Output Gate: o' = sigmoid(Wyx'+W,qa' =1 +b,), what
part of the cell state ¢’ is used to compute the activation.

The cell state @ at timestep ¢ is then computed as ¢’ =
floc ™l +i o tanh(Weex' + Weaa' ™! + b.), where o is
the hadamard product.

While there are other architectures that also use the con-
cept of cell state and modular updating, such as gated
recurrent units (GRUs) [16], their underlying idea does
not greatly differ. However, since LSTMs were the first to
introduce the explained concepts, are more general in their
application [17], and often outperform GRUs [18], we focus
on conveying the LSTM architecture.

3 Related work

In this section, we first give a brief overview of the explorable
explanation literature before elaborating on the corpus of
related work in the area of educational visualizations for DL
non-experts and RNN visualizations.

3.1 Explorable explanations

Explorable learning environments were invented long before
DL raised awareness in the broader public. Their effective-
ness was investigated in the line of work by Hundhausen
et al. [19,20]. Schweitzer and Brown then described design
characteristics and an evaluation of active learning settings
in classrooms by using visualization [21]. There also exists
a line of work on the use of visualization for programming
education [22-24]. These approaches show how visualiza-
tion can communicate algorithmic thinking effectively. We
combine these ideas with more recent concepts, which have

been proposed under the term exploranation in the area of
science education [25], where explorable explanations pro-
vide benefits for learning.

There are numerous helpful visualizations conveying
properties of NN architectures, their functionality, or appli-
cation scenarios [5,6,26]. However, we will focus on edu-
cational, explorable visualization approaches that have been
proposed for different network types. One of the most promi-
nent interactive educational visualization approaches has
been proposed by Smilkov et al. [7]. In their explainable
Tensorflow Playground, one can select the properties of a NN
to be trained. They also allow the customization of certain
training parameters and deployed their approach as a web-
based application. Similarly, in Revacnn, users can explore
the activations of a CNN by modifying the network struc-
ture and training the network in the browser [27]. While
these approaches help teach the most basic concepts of MLPs
and CNNs, respectively, more advanced architectures need
further, specialized visualizations. Another approach that is
closely related to ours, but works on a different type of NN,
namely GANSs, is GanLab [4]. They focus on how the genera-
tor and discriminator are used adversarially to yield synthetic
data that resembles the data distribution it was trained on.
However, GANs bring their own visualization challenges,
which are fundamentally different from those we found for
RNNSs. Additionally, neither of these systems was systemat-
ically and quantitatively evaluated.

As none of these visualization approaches is designed to
help non-experts understand how RNNs function, with their
unique concepts of memory and temporal dependence, our
aim is to fill this gap in the literature with exploRNN. Addi-
tionally, we shed light on the usefulness of such interactive
learning environments through our quantitative user study.
We specifically examine the difference in learning outcomes
across different learning hierarchies [28], the complexity of
the learning experience by means of cognitive load [12], and
qualitative assessments such as motivation, perceived quality
of content, and joy throughout the learning process. We hope
that our findings in this area can be an indication for similar
learning environments and motivate others to conduct similar
experiments.

3.2 RNN visualizations

Apart from educational visualizations, there is another line
of visualization work targeted toward investigating RNNss.
These approaches are designed mainly for researchers who
want to understand and debug their models. An early
approach toward visualizing RNNs was proposed by Karpa-
thy et al., who visualize the activation of RNN cells for expert
analysis [29]. Strobelt et al. published LSTMVis, in which
the hidden state dynamics of RNNs is investigated [30].
They specifically demonstrate how text understanding can

@ Springer

A. Bauerle et al.

be analyzed through investigating the structure and change
of the cell state. They also presented Seg2Seg-Vis, in which
sequence-to-sequence models can be probed to reveal errors
and learned patterns [31]. Along the same line, Ming et al.
introduced RNNVis [32]. They analyze the functionality of
individual hidden state units by observing their reaction to
specific text segments. With RNNbow, Cashman et al. pub-
lished a visualization, in which the gradients of RNNs can
be analyzed [33]. They attribute the gradient to individual
letters in a textual input sequence. This way, researchers
can inspect how their models learn. In another approach,
Shen et al. proposed visualizations for RNNs [34] operat-
ing on multi-dimensional sequence data. Here, developers
can inspect hidden unit responses to get insight into different
networks. Similarly, Garcia and Weiskopf proposed a visu-
alization for the inspection of hidden states of RNNs [35].
However, all approaches described here are expert tools that
help during development. Contrary to this, we aim to convey
the general idea of RNNs to novices in this area of DL.

Insights on the effects of using exploration and visual-
ization for learning in general, as well as present educational
visualizations for NNs, show how interactive exploration can
help a broader audience with access to learning experiences.
Therefore, we propose exploRNN, which provides insight
into the function of RNNs for users who know the basics
of DL, but are laymen in the area of sequential learning.
Our evaluation also provides the first comparative analysis
of interactive learning environments and classical learning
approaches for NN education.

4 Educational objectives

To inform the visualization design of a learning experi-
ence, educational objectives are needed, which we defined
based on Bloom’s taxonomy [28]. Our target users already
understand the fundamental concepts of DL and know about
feed-forward NNs. Without this background knowledge,
the theory behind those techniques would first need to be
explained, which would extend the scope of exploRNN. As
our target audience aims to learn the yet unknown con-
cepts of RNNs, we focused on recall (01&2), comprehension
(02&3), and transfer of the learned information.
Later, this learning can be applied in the wild to access levels
four to six (analyze, evaluate, create) of Bloom’s taxonomy.
Formulated on this basis, our educational objectives are:
Justification. Users should know that RNNs, in contrast
to other network types, can be used for sequential data. This
also includes BPTT, through which RNNs can learn tem-
poral dependencies, which classical feed-forward networks
cannot.

Cell Structure. Users should then understand how
LSTM cells are built and what functionality their individ-

@ Springer

ual components have. Here, the cell gates, as well as the
memory element, are of special importance, as they enable
the processing of sequential data.
Training Setup. To understand the training process of
such networks, users should know important parameters for
the setup of RNNs. This includes the network structure, train-
ing parameters, and how data are fed to the network.
Task. Finally, to transfer this theoretical knowledge
about RNNs to real applications, users should learn about
different application areas and data types that can be used
with RNNs. In the end, they should be able to describe how
RNNs could be used for their own application scenarios.
Similarly to a lecture at a university or a textbook, our
learning environment is designed to provide an introduction
to RNNs from which interested users can start experimenting
with the techniques. Accordingly, our educational objectives
not only motivate the importance of RNNs, but are also aimed
at providing insights about the input data and related tasks,
as well as how the training process and LSTM cells work.

5 Design challenges

Since RNN cells are a special form of NN layers, they open
up unique challenges for visualization-based education. We
observed both visualization design challenges and technical
challenges, which we describe in this section.

5.1 Visualization design challenges

We first discuss the following visualization design challenges
that we identified in the context of an interactive learning
environment aimed at RNNs and illustrate how they relate to
our educational objectives:

V1) Complexity. As mentioned in Sect. 1, one of our cen-
tral goals is to simplify learning by reducing cognitive
load [12]. However, RNNs are typically trained on a large
amount of complex data that can be difficult to grasp
[36,37]. The same holds for network architectures,
which are also often too complex to fully comprehend in
their entirety [38,39]. Consequently, all visualizations
must be interpretable and intuitive, but realistic enough to
form a compelling use case [40,41].

V2) Dynamics. An educational system to teach RNN con-
cepts should clarify the dynamics of the sequential data on
which these networks operate , as well as the dynam-
ics of the training process (03). These dynamic processes
must be visually communicated, including data type and data
processing, both forward (inference) and backward (back-
propagation), within the network [42].

V3) Multiscale. RNN structures need to be communicated
at different granularities, i.e., network, cell, and cell com-
ponents . These multiple scales need to be fluidly

exploRNN

inspectable, while at the same time, the granularity at which
the user currently operates must be communicated [41,43].
V4)Supervision. In classical learning settings, teacher super-
vision or other opportunities to seek further information is
provided. Contrary to this, exploRNN 1is designed as a stan-
dalone learning environment that does not require external
guidance . Thus, supervision has to be substituted by
visual guidance [44,45].

5.2 Technical challenges

Whereas the visualization design challenges are based
directly on our educational objectives, the following tech-
nical challenges relate to the development of such an inter-
active, explorable learning environment:

Training Time. Typically, training processes can take
up to several days to convergence [46,47]. However, for an
interactive learning experience, waiting days for convergence
is not feasible. To provide direct feedback to the user, our
networks thus have to converge in minutes instead of hours
or days.

Training Steps. Normally, computation is done as fast
as possible to minimize the time it takes for the network to
converge. However, we want the user to be able to follow the
training process and observe individual training steps [44].
Thus, training steps should be separated temporally from the
visualization.

Deployment. Modern-day learning is often conducted
via online courses, blog posts, or explainable web pages [48].
Although this makes such learning environments accessible
to a broad audience, it also limits the technical freedom of
such applications [49]. Therefore, educational environments
should be deployed to a broad audience, while also providing
diverse functionality.

6 Visualization design

on the network scale, and the LSTM cell view (Fig. 6), which
allows for a detailed inspection of an LSTM cell. This is in
line with our goal of reducing complexity by focusing
on individual steps of the learning process rather than pre-
senting everything at once.

Animation Animation has shown to be effective in visualizing
data relationships and algorithms [42,50,51]. Further-
more, animation has shown to be associated with fun and
excitement [52], which is in line with our goal of making
learning more enjoyable . Thus, to visually communi-
cate how the network operates on sequential data, we use
animation throughout our visualizations (V2).

Onboarding Novel visualizations and interactive systems can
be hard to understand [53]. We designed exploRNN in a way
that allows exploration without running the risk of making
irreversible errors or needing teacher supervision (V4). How-
ever, instructional aids may be important to understand such
complex content [54]. Therefore, we use an onboard-
ing process for our educational environment [55] (cf. Fig. 3).
With this process, we aim to further reduce the cognitive load
during learning compared to classical learning environments
[56]. For example, the sequential nature of RNN's
V2) and the data and tasks that RNNs can be used for
are communicated in exploRNN.

Textual explanations In contrast to other learning environ-
ments, which show static textual explanations below the main
visualization [4,7], we instead provide such additional infor-
mation as details on demand (V3) [43]. This way, users can
access more information for exactly the components they
want to learn more about (DU), while not having to read a
lot of text . Our interactively explorable dialog boxes,
as shown in Fig. 4, provide information about all important
elements of the learning environment. Such dialogs exist for
all headings and are anchored through an (i) icon, and for
all components of an LSTM cell, which is referred to in our
onboarding process.

6.1 Network overview

In the following, we discuss the visualization design of exploRNN .

We explain how we tackle the aforementioned visualization
challenges (Vx) and learning psychology goals m
while targeting the educational objectives defined
in Sect. 4. We first describe the overall visualization con-
cepts we implemented for exploRNN. Then, we elaborate on
the different views of our environment in the upcoming sub-
sections.

Scales To show both an overview of the training process
and give detailed insight into the computation that is per-
formed within one recurrent cell , we employ an
overview first, zoom and filter, then details on demand visu-
alization design, following Shneiderman’s mantra (V3) [43].
Therefore, exploRNN consists of two main views, the net-
work overview (Fig. 1), which displays the training progress

In the network overview, following the natural reading direc-
tion of western cultures, as well as related work on NN
architecture visualization [57-59], we arrange the network
from left to right. On the left, one can see the input type that
is currently used to train the network (A). Centered, we present
an abstracted visualization of the network, where users can
see how many layers the network contains (B). On the right,
a visualization of the prediction along with the prediction
error shows how training progresses (C). Below these visual-
izations, information about the training process, controls for
the training process, and means to change training parameters
are shown (D-F).

A) Input. To experiment with the network, users can
select the input data that is used to train the network from

@ Springer

A. Bauerle et al.

Start Training
Now, lets start the training by hitting the play button!

If the network is paused, you can also advance individual epochs

using the forward button
SKIP INTRO LETS GO! >

N4

Epochs (D

Fig. 3 Onboarding dialogs guide the user through our visualizations,
so that no manual introduction is needed, and the user can explore
exploRNN on their own. Textual descriptions with highlights pro-
vide detailed explanations for individual components. Positioning and
arrows reveal associations between dialogs and components

Memory Cell

The is the heart of any LSTM cell. By having a cell state, and
deciding how to update it based on
LSTM cells are able to

¢! = filtered_input + filtered_state

Symbols:

c' : the cell state at timestep t

Fig.4 Users can access more detailed explanations for many elements
of our visualizations such as training steps, hyper-parameters, and oper-
ations in a cell

a set of explanatory input types. Data for an interactive and
explainable visualization of NNs needs to both explain the
network functionality and be easy to understand (V1.
Therefore, current educational visualizations use an abstract,
two-dimensional distribution of points to train their networks
on [4,7]. With exploRNN, we follow this approach of employ-
ing data that is as simple as possible (CR). As RNNs are
focused on sequential data, we decided to use periodical
mathematical functions and simple text snippets, which map
nicely to the sequential nature of RNNs (V2). The functions
that can be used as training data in exploRNNare a sinusoidal
function, a sawtooth function, an oscillating function, and a
composite sinusoidal function and vary in their periodicity.
To demonstrate the sequential and dynamic nature of these

@ Springer

input functions, we animated those that are in use so that they
seem to flow while being input to the network .

In addition to abstract function continuation, we also pro-
vide text-based data to train the network on (DU). To allow for
interactive training, we employ rather simplistic text samples.
These include arecurring character sequence (ababab...) and
the well-known text lorem ipsum. Here, we employ a simi-
lar design language as with function data, to show that most
ideas can be transferred across tasks. By incorporating this
text learning scenario, users of exploRNN get to learn and
inspect not only abstract problems, but can also experience
more realistic scenarios (M)

B)Network. In the network visualization, we want to com-
municate the recurrent nature of our network , but at the
same time, show all layers. Thus, instead of the more fre-
quently used unrolling of RNN layers [60], we add a loop to
the layer glyph to symbolize this recurrence. This symbol-
izes the feedback loop of information output at ¢ back to the
input of a cell at ¢ + 1 (V2), which enables BPTT.

Our network visualization is animated as data flows
through its layers . For the prediction step, dashed
lines flow in the forward direction to symbolize forward data
processing. For the backpropagation step, they flow back-
ward to resemble the backpropagation of the error (V2).
Dashed lines are moving from input to output during the
prediction phase, and from output to the first network layer
during training, because backpropagation is not applied to
the input domain.

Users can also investigate how the training progresses dif-
ferently depending on the number of recurrent layers in the
network . Therefore, layers can be added or removed
from the network to be trained, as shown in Fig. 5 (DU). As
with most explorable components, we explain the implica-
tions of this in our introduction, and users can click the (i)
next to the network heading.

C) Predictions. Commencing the top row of visualizations
is the data plot, where we visualize an input sample and the
prediction of the network along with its ground truth .
Here, multiple data points that are processed by the network
one after the other are used to inform a prediction, which is
visualized by sliding a gray box over the input data that is
currently processed (V2). Additionally, the prediction values
slowly build up with animations to clarify that this prediction
is building up sequentially . We then use vertical lines
in the function plots, which slowly emerge between the pre-
diction and the target value. This vertical line encoding is in
analogy with the way we calculate errors, namely, by looking
at the prediction values and calculating the difference to the
ground truth (DU). The error calculation is embedded tem-
porally between the inference (forward network animation)
and backpropagation (backward network animation) phases
of the training process (V2). Altogether, through this ani-
mated component, while not being interactive itself, users

exploRNN

Fig.5 left: Adding a layer
between two existing layers.
right: Removing a layer from
the network

add layer

remove layer

can inspect the results of modifications that have been made
in other places (03).

D) Process. According to the typical NN training setup,
we divide the training process into three distinct steps:
inference (forward), validation (error calculation), and back-
propagation (backward). The explanation pane in the lower
left of the network overview (see Fig. 1) displays which step
is currently executed and provides an explanation of what
happens in each of these steps . Through this, the user
can learn more about the training dynamics of the network
. As described previously, animations in other compo-
nents complement this dynamic nature of the training process
V2.

E) Controls. In the network overview, the network is
trained by means of epochs to first provide an overview [43]
of the training process (V3) (CR). To experiment (03), users
can interact with the control area in the bottom center of our
environment . In addition to automatically advancing
epochs, which can be controlled with the » and n buttons,
users can also trigger network training for a single epoch, by
pressing the » button . The training process can always
be reset using the $ button. A back button to go to a previ-
ous epoch is not included in exp/oRNN as this would require
saving multiple previous states of the network parameters,
which would require significant browser memory. Therefore,
and as individual epochs normally do not change the network
behavior completely, going back one training epoch during
training is not a common operation during neural network
training, so we think users will not miss such functionality.

F) Training Parameters. To communicate the training
setup of an RNN , a trade-off between completeness and
simplicity must be made (V1. Thus, we let the user freely
choose some training parameters, but employ restrictions for
others . As mentioned, users can add or remove individ-
ual network layers and use different preset training inputs. In
addition, they can change the learning rate, batch size, and
noise (DU). The learning rate and batch size allow for explo-
ration of different training settings . Noise can be added
to make the training data more realistic, resembling real-
world scenarios of imperfect measurements (O4). Parameter
changes can be made through sliders, which are positioned on
the bottom right. To provide an intuition about the influence
of these parameters, we include pretrained models that are
loaded during the onboarding steps which explain each indi-

vidual parameter (V4). Other parameters, such as units per
layer or optimization strategies, cannot be changed in our
implementation. This trade-off between freedom of explo-
ration and simplicity proved to be effective in educating users
about the influence of different training parameters and keep-
ing their cognitive load low (V1.

Hierarchical aggregation can help simplify visualization
designs [61]. Thus, after getting an overview of the net-
work, the user can inspect another hierarchy level in detail,
namely individual LSTM cells [43]. When selecting one
of the layers in the network overview a zooming transition
onto one of the network layers gradually reveals the struc-
ture of an LSTM cell to support the user’s mental image of
looking into one of the layers (V3 . With this multiscale
approach, where users can navigate between views, orienta-
tion is important . Therefore, a color coding indicates
the current level of detail. This highlight color is blue for
the network overview, whereas orange is used for the LSTM
cell view. Orange and blue are complementary colors, which
makes them easily distinguishable, and they can be differen-
tiated by vision-impaired users [62].

6.2 LSTM cell view

In the LSTM cell view, we show a detailed visualization of
the selected cell on the left, embedded in small pictograms of
neighboring cells (G). On the right of this cell visualization,
one can see the input, target, and prediction values of the
network, where new points are added as they flow through
the cell (H). Below these visualizations, we show information
about the training process, controls for the training process,
and means to change training parameters, similar to the net-
work overview (I-K).

G) Cell Architecture. To convey the functionality of one
recurrent unit , we show all computational elements
within a cell (DU). Wherever information is combined, we
show a + icon. Icons for the input (=), forget (&), and out-
put gates (31) visualize the gating functionality of an LSTM
cell. While all gates that transform the data are depicted with
circular icons, the cell state, which represents the saved state
of the cell, is represented by a squared @ icon, illustrating
the semantic difference between these components. Each of
these cell components can be selected to get a detailed expla-

@ Springer

A. Bauerle et al.

Text Data

LSTM Cell ©

Data is shown to the network value by value to build up the internal state. After a fixed number of data points has been
processed, the network can make a prediction on how this sample would continue.

1 Layer Input @ 2 Gate Activation (D 40utput @

Validation (D

The predicted values are compared to the correct values (ground truth) from the training dataset. The difference is used
to calculate the loss:

Backward (D

The calculated loss is backpropagated through the network as well as through time (reverting the input timesteps), to
find out where the prediction error came from and update the network variables for the next iteration.

Fig.6 LSTM cell view. (G) Visualization of data flow through the cell.

H) Input to the network and its prediction. Visualization of the training
error computation. A gray sliding window indicates which data points
are needed to initialize the cell state. (|) Explanations with more detailed

nation of its functionality, as shown in Fig. 4, marking another
level of detail in this visualization (V3) (CR).

Data flow is visualized through connecting lines and
step-by-step animations of the cell components . Here,
elements that process data in the currently visualized com-
putation step are highlighted. As in the network overview,
connections moving data are symbolized with dashed lines.
Those lines flow forward during inference and backward dur-
ing backpropagation. This way, we communicate how the
hidden state and output of these cells is computed and visu-
alize how the data flows from one to the next operation or
gate (V2 .

The reverse data flow of BPTT occurs not only once within
a cell to backpropagate to the previous layer, but multiple
times, for all input time steps (O1). The connections within
the cell also clarify that there are two recurrent cycles, one
from the output of the cell back to the input, and one within
the cell to update the cell state based on its state in the pre-
vious iteration . As a result, while other visualizations
require unrolling, where time steps are visualized by display-
ing multiple cells in concatenation [60], we communicate
recurrence through step-by-step animation. This removes the
ambiguity of stacked layers vs. unrolled cells, which was
shown to hinder learners in our first experiments (V1) (CR).

H) Data Plot. Right of the cell visualization, we show
the input data, network prediction, and ground truth all in

@ Springer

23

|

Network Data (D

fugialt nul Il a

A series of predictions
for backpropagation, only the first pred

0.0001 0.001

steps for the forward direction of data flow. (J) In addition to interactively
training the network, users can change the speed at which the visualiza-
tion for cell steps advances. (K) Just as in the network overview, users
can modify training parameters

one graph. In contrast to the network overview, where the
network is directly connected to this output graph, the cell
is disentangled from this visualization. As the depicted cell
typically receives data from previous cells and outputs data
to subsequent cells, this visualization, where animation steps
are synchronized but not visually connected on both the input
and output side, better reflects the network architecture of
RNNs (V3 . Users can inspect this view during interac-
tively controlled training to see how the network processes
input data to make predictions sequentially and how it cal-
culates the training loss in relation to the processing steps
within a cell V2.

|) Training Process. The three steps of inference, valida-
tion, and backpropagation are just as relevant in the LSTM
cell view as they are in the network overview (03). As the
training speed is lower in the LSTM cell view, users can skip
part of the data processing and go directly to the process-
ing step of interest (V1&2). For the forward pass, we add
additional explanations for the different processing steps of
receiving the layer input, calculating the gate activations,
updating the cell state, and outputting the activation value
(DU). These explanations are highlighted in synchronization
with the processing steps during the forward pass to the data
flow in the cell visualization above (MJ), allowing users to
draw links between the processing steps and the explanations
they are interested in (V2&4) (CR).

exploRNN

J) Controls. In the LSTM cell view, processing is done
by means of compute steps, showing a much more detailed
processing pipeline than in the network overview (V3). As
in the network overview, the control area can be used to
experiment with the training process (03). The more fine-
grained advancement of the visualization is also adopted by
the degree to which the animation advances with the forward
button, since it only executes the next compute step within
a cell . In addition to what can be done in the network
overview, the speed of the animations for data processing
within this cell can be adjusted, so that users can explore the
processing steps at their own pace (V2).

We want to emphasize the buildup of state within a cell
based on multiple input time steps. Thus, we show how the
network processes these inputs in great detail, whereas we
made the animation of the backpropagation take less time
than forward processing. As exploRNN is not designed to
represent accurate timings anyway, this is our way of visual-
izing cell processes in detail, while also preserving the ability
to observe multiple epochs.

K) Training Parameters. Training parameters can be
adjusted in the LSTM cell view just as in the network
overview, giving the user even more control over the training
process and room for experimentation (03).

To get back to the network overview, one can click any-
where outside of the LSTM cell in Fig. 6 (G) (V3.

7 Technical realization

While the visualization design described above has been
carefully crafted to meet the educational objectives described
in Sect. 4 and the visualization design challenges outlined
in Sect. 5.1, its technical realization needs to take into account
the technical challenges identified in Sect. 5.2. In this section,
we detail how we tackled these technical challenges.

Training Time. While an RNN for a complex appli-
cation cannot be trained live in the browser, we simplify the
problem in multiple ways. By employing simplistic data sets,
the model can converge after relatively few epochs. Addi-
tionally, we limit the number of data points that are fed to
the network per epoch. Therefore, epochs are processed suf-
ficiently fast for our interactive visualization approach. We
also limit the network size to at most seven layers, so that
memory consumption and processing time are reduced. In
turn, users can see the training progress and get visible pre-
diction improvements after only a few epochs, while one such
epoch takes seconds to compute.

Training Steps. A key aspect of our approach is the
decoupling of computation and visualization. Through this
decoupling, we are able to show the training steps in an
observable manner and enable exploration at the user’s own

pace. This helps users understand how the model processes
input data and predicts new data points.

Deployment. To be able to make exploRNN publicly
available for a large audience, we implemented it as an inter-
active browser application using HTML and JavaScript. To
train the RNN, we use Tensorflow]S [49], for animated visu-
alizations of the trained network, we use P5.js [63]. This
way, we are able to provide an interactive, web application
that visualizes the training dynamics of RNNs through ani-
mation, which is accessible at: https://mi-pages.informatik.
uni-ulm.de/explornn/.

8 Limitations

While exploRNN provides a novel environment for learning
about RNNs, there is still room for more advanced visual-
ization designs that could be explored in the future. Some of
these limitations are explained in the following.
Explanations exploRNN offers alot of experimentation thatis
complemented by textual explanations. However, the number
of textual explanations that fit into the context of such an edu-
cational system, which is designed to provide an overview of
this complex topic, is insufficient to fully explain RNNs. For
specific questions that are not addressed by our interactive
system, we refer to developer documentation and scientific
papers.

Drill-Down exploRNN explains RNNs on both a network and
a cell level. Apart from seeing the data flow on these gran-
ularities and textually describing the components of a cell,
visualizing the workings of these components could further
benefit the learning experience. However, these components
are just mathematical functions to which neither the input
nor output have a directly discernable meaning. If we were
to, e.g., visualize the internals of a memory component, users
could only see matrices of seemingly meaningless numbers
flowing through these cells. This would not add any benefit
and might even result in confusion about such a visualization.
To explain these internal components, novel interpretability
techniques might help. Inventing and implementing those is
beyond the scope of this work.

Component change To see the influence of individual com-
ponents in a cell, changing or removing them could be an
interesting addition to the workflow. We did not implement
this capability for two reasons. First, adding such function-
ality goes deep into the working of individual cells, which
would exceed the learning objective of getting an overview
of RNNs and LSTM cells. In turn, we assume that changing
single components in individual cells is unlikely to have a
measurable and interpretable effect on the overall learning
outcome. Second, we would have needed to implement our
own DL library for this to be possible, as Tensorflow]S has
predefined LSTM layer implementations.

@ Springer

A. Bauerle et al.

Degrees of freedom While users can change some hyper-
parameters and network settings in our environment, we
deliberately do not expose all possible settings to our users.
The goal of this limited exploration setting is that users can
getan overview of important manipulations to be made, while
at the same time not overwhelming our target audience. As
for limited explanations, we refer to developer documenta-
tion and scientific papers for users that want to explore these
details.

Layer types In our implementation, we focused on conveying
LSTM cells. However, there are numerous other cell archi-
tectures for RNNs. Although we do not think this limited
focus hinders learners with understanding RNNs on a high
level, it would, nonetheless, be helpful for users specifically
interested in certain cell types to include these in exploRNN.

9 User study

To evaluate the effectiveness of our approach, we conducted a
user study with 37 participants (30 male, seven female) aged
between 21 and 32. Participants were recruited from a DL
course at our local university. Our study was a lecture at the
end of the course, after students had already learned about
feed-forward NNs. Participants were randomly assigned to
one of two groups. The exploRNN group received the interac-
tive application, and the text group was presented a text-based
learning environment.

To look at learning outcome in detail, our evaluation was
divided into the first three distinct, hierarchical cognitive
learning goals according to Bloom’s taxonomy [28], namely
recall, comprehension, and transfer. We expect higher learn-
ing outcomes for the exploRNN group compared to the text
group at all three levels. For a closer look at the cognitive
processes involved in learning , we also collected data
for the three types of cognitive load [12]. Intrinsic cognitive
load (ICL) results from the natural complexity that underlies
the learning content. Since the difficulty does not differ, there
should be no difference between the two groups. Extraneous
cognitive load (ECL) is caused by inadequate instruction or
presentation of information. Due to the step-by-step presen-
tation of information and the direct connection of textual
information and explanatory figures in the exploRNN group,
we expect lower ECL for the exploRNN group compared to
the text group. Lastly, germane cognitive load (GCL) repre-
sents the invested learning-related load. GCL is connected
to the processes that are needed to construct and automate
mental representations [12]. Following the reduced ECL in
the exploRNN group, learners should have more free cogni-
tive capacity in working memory to invest in learning-related
GCL.

@ Springer

9.1 Hypotheses

Based on the described theory, we hypothesize the follow-
ing. We expect a higher learning outcome, differentiated
by recall (H1), comprehension (H2) and transfer (H3) in the
exploRNN group than in the text group. Furthermore, we
expect no differences between the groups for ICL (H4). We
expect a lower ECL in the exploRNN group than in the text
group (H5). For the GCL, we expect it to be higher in the
exploRNN group compared to the text group (H6).

9.2 Method

Our study was split into different steps, which we explain in
the order they were presented to the participants.

Prior knowledge. Prior knowledge was measured with seven
open-ended questions on NNs and DL techniques (e.g., Name
two activation functions used in deep learning.). The ques-
tions were developed by a domain expert. All answers were
rated by a domain expert, following a predefined solution to
ensure objectivity. A total of one point could be scored for
each question, with partial points of .5. The maximum score
for the prior knowledge test was seven.

Motivation (MSLQ). To assess motivation, the MSLQ [64]
subscale for motivation was used. The MSLQ is a self-report
questionnaire designed for an academic setting. Motivation
was measured with twelve items (e.g., I'm confident I can do
an excellent job on the tests in this study.). Learners were
instructed to respond as accurately as possible, reflecting
their attitudes and behaviors toward the learning module.
Responses were given on a 7-point Likert scale ranging
from 1 strongly disagree to 7 strongly agree. Cronbach’s
Alpha was computed for the internal consistency of the mea-
sures [65], and the reliability was o = .95.

Learning material. The learning material was presented
either as a text with illustrating figures, formulas, and graphs
(see our supplementary material) or through exp/loRNN (see
website). For both conditions, the information was the same.
The only difference was the presentation medium and the
lack of interactivity in text-based learning.

Learning outcome. To assess learning outcome, a domain
expert developed a posttest with 11 open questions on the
content of the learning session. To better understand cog-
nitive processes, the posttest was differentiated by the first
three levels of Bloom’s taxonomy [28]. Recall was mea-
sured with four questions (e.g., Name the backpropagation
algorithm that is used for RNNs.). Comprehension was also
measured with four questions (e.g., Explain the meaning of
this formula: ¢, = filtered_input + filtered_state). The main
purpose of these questions was to test how well people could
explain and discuss the learning content. Transfer was mea-
sured with three questions (e.g., Assuming you have a poem
continuation network and training data with poems from the

exploRNN

internet. If your network now makes a prediction, how do
you determine if it is correct, to calculate the loss?). These
questions were designed to test the ability of learners to draw
inferences from the learning content and apply it to new con-
texts. Similarly to the prior knowledge test, each question was
rated by a domain expert, following a predefined solution to
ensure objectivity. A total of one point could be scored for
each question, with partial points of .5. The maximum score
for recall and comprehension was four each, and for transfer,
it was three, so the total maximum score for the posttest was
eleven. We did an ANOVA on the learning outcome to test
for statistical significance.

Cognitive load. To measure cognitive load , the dif-
ferentiated cognitive load questionnaire was used [66]. It
contains two items for ICL, three items for ECL, and three
items for GCL, all measured as self-reports on a 7-point Lik-
ert scale from 1 strongly disagree to 7 strongly agree. To
measure internal consistency, the Cronbach Alpha was cal-
culated [65]. Reliability was o = .66 for ICL, ¢ = .81 for
ECL, and o« = .77 for GCL. As for learning outcome, we
tested for significance with an ANOVA.

System usability To quantitatively measure the system usabil-
ity, the System Usability Scale (SUS) was used [67]. This
scale is a self-report measurement consisting of 10 items
related to the usability of exploRNN (e.g., I found the system
very cumbersome to use.). Responses to the items were given
on a 7-point Likert scale ranging from 1 strongly disagree to
7 strongly agree. The internal consistency of this scale was
o =.74.

Qualitative questions For an impression of the quality of the
learning material, further questions were implemented. Three
open-ended questions were related to likeability (What about
the learning experience did you like especially, what did you
not like?), missing functionality (Was there something you
would have liked to do but could not?), and additional com-
ments (Other remarks.) . For liking (I would like to use
this learning material.) and recommendation (I would rec-
ommend this learning material to my friends.) of the material,
two items could be rated on a 5-point Likert scale from very
unlikely to very likely. Content (How was the quality of the
content?) and design (How was the design of the learning
experience?) could be rated with 0-5 stars.

9.3 Results

In the following, we present the results of the user study.

Descriptive data. The analysis of the descriptive statistics
showed that subjects of the text group and the exploRNN group
did not differ in most of the variables. T tests (variances
were equal for all variables) with respect to age (p = .33),
gender (exploRNN group 21% females, text group 16.67%
females) (p = .74), MSLQ (p = .11), self-efficacy (MSLQ)
(p = .16) and duration (p = .79) revealed no significant

differences. Motivation (MSLQ) showed a significant ¢ test
(p = .02), indicating that learners in the text group had a
significantly higher score. Descriptive data for all variables
per condition are given in Table 1.

To analyze whether prior knowledge and MSLQ should
be used as covariates, we conducted a correlation analysis
with learning outcomes and cognitive load. Significant cor-
relations could be found for GCL with the MSLQ (r = .37,
p = .024) and for the recall of the posttest with the MSLQ
(r = .44, p = .0006). Therefore, they were included as
a covariate in the following calculations concerning GCL
and recall. No other significant correlations for the potential
covariates could be found.

Learning outcome. Against our hypotheses, we found a
significant difference regarding recall (F(1,34) = 3.91,
p = .028, nf, = .103) in favor of the text group but not
for comprehension (F < 1, n.s.) or transfer (F' < 1, n.s.).
Cognitive load. Contrary to our expectations, we found a
significant difference between text and exploRNN group for
ICL (F(1, 34) = 3.85, p = .029, nf, = .099). ECL showed
the hypothesized effect: The exploRNN group showed a sig-
nificant lower score than the text group (F(1,34) = 4.33,
p = .023, nf, = .113). Against our hypothesis, GCL was not
significantly higher in the exploRNN group than in the text
group (F' < 1, n.s.).

System usability. The SUS questionnaire indicates an excel-
lent usability (M = 84.47,SD = 9.45)[68]. Partici-
pants also rated our approach as significantly more likable
(F(1,30) = 10.52, p = .003, n3 = .260), more recom-
mendable (F(1,30) = 11.75, p = .002, nf, = .281), and
better designed (F (1, 30) = 20.711, p < .001, nf, = .408)
compared to the learning text.

Qualitative questions. We also got some qualitative feedback
in our free-form fields. Participants liked our introduction,
which apparently made it easy for them to get started with
exploRNN the tutorial was nice and the platform was easy
to use. They also mentioned that the graphical support of
these textual explanations was helpful for them to form a
mental image of the setting: the mental bridge the graph-
ical presentation helped build was helpful in memorizing
and understanding. Some participants said that they did not
remember specific names, as it was not important during the
usage of exploRNN': I later did not remember the name of the
algorithm that was used, since it was not important during
the usage of the tool. Some participants asked for something
similar for other types of networks, e.g., I would like to have
similar resources to cover other topics from the basics such
as MLPs up to advanced topics and more complicated kinds
of networks. As described in Sect. 8, we only support a lim-
ited set of interactions, which some participants commented
on, e.g., [I missed] changing the activation function of the
LSTM gates.

@ Springer

A. Bauerle et al.

Table 1 Means and standard deviations for our study results separated
by groups for all variables

Variable Text exploRNN
M SD M SD

Duratiton (min): 43.6 26.78 40.87 35.67
Age (years): 24.94 2.96 24.05 2.51
Pre-T: (%) 83.14 13.86 80.0 14.57
Post-T: (%) 68.48 20.46 65.47 14.41
Post-T recall*: (%) 79.75 26.30 63.25 29.64
Post-T comp.: (%) 65.00 51.54 65.50 37.26
Post-T trans.: (%) 58.00 69.54 68.33 41.46
ICL*: (%) 61.51 18.51 48.82 20.51
ECL*: (%) 48.14 23.32 37.09 15.52
GCL: (%) 77.51 13.94 75.94 17.13
MSLQ*: (Max: 7) 5.17 0.95 4.56 1.30
SUS: (Max: 100) - - 84.47 9.45
Qualit. Like*: (Max: 5) 3.27 1.03 4.35 0.86
Qualit. Recomm.*: (Max: 5) 3.00 1.20 4.24 0.83
Qualit. Content: (Max: 5) 4.00 0.76 4.35 0.61
Qualit. Design*: (Max: 5) 3.20 0.94 4.47 0.62

Numbers annotated with * indicate a significant difference between the
two conditions

9.4 Discussion

In the following, we will refer back to the hypotheses we had
before conducting the study and discuss the study outcome.
Learning outcome We looked at both recall and understand-
ing regarding the learning outcome. In contrast to (H1), we
found that learners in the text group showed significantly
better results for recall. While we found no significant differ-
ences between the groups regarding comprehension (H2) and
transfer (H3) the results are interesting nonetheless. Although
not significant, the descriptive statistics indicate that the score
for transfer is about 10% higher for exploRNN compared to
text (DU). This could be a first indication that learning envi-
ronments such as exploRNN can help learners build a deeper
understanding of the subject compared to learning with clas-
sic text. However, significant results and further research are
needed to support this statement. Compared to recall, these
results may indicate that while learners are better at learning
terms by heart (surface learning) when they learn with text
than with exploRNN.

A possible explanation for the better recall performance
in the text group could be that learners have more experience
with text-reading strategies [69]. This might help with the
complex terms explained here, as learners might find it easier
to find information that was previously presented [70]. Thus,
designing ways to easily retrieve previously presented infor-
mation could be an interesting direction of future research for
such interactive explorables. Another possibility is that learn-

@ Springer

ing with an interactive environment, which is affirmative and
provides information step by step, might infuse the illusion
of knowing [71]. Learners may think that after a few experi-
ments in exploRNN, they have acquired enough knowledge,
while there is still much more to explore and learn. In the text
group, it is immediately clear to the learner when the text is
finished. On the contrary, exploRNNcan require user initia-
tive for information acquisition. As the learning experience
was self-controlled, participants could decide for themselves
when to go from the learning content to the posttest. Refer-
ring to the illusion of knowing, learners might have felt too
competent as they experienced this more guided experience.
However, even though learners may be able to transfer what
they have learned to other application areas, they may be
missing important basic terminology that was presented in
the learning material to reflect their knowledge gain in a clas-
sical learning test.
Cognitive load Against (H4), the exploRNN group showed
significantly lower ICL than the text group. The perceived
difficulty of the learning material is 12.71% lower for
exploRNN even though the text content was identical in both
conditions. This suggests that exploRNN makes the learn-
ing material appear easier . The reason for this could be
that the content is presented step by step in the tutorial of
exploRNN, instead of all at once as in the text condition [56].
The results regarding (HS) are consistent with our assump-
tions. With a large effect size, the exploRNN group showed

lower ECL than the text group (CR). Therefore, exploRNNreduced

the extraneous cognitive load compared to the text content,
although the content was the same in both conditions and
there were no unnecessary figures or information in the text.
Combined with lower ICL, more cognitive capacity remains
for GCL, which is important for learning.

For GCL, we did not find the significant difference we
hypothesized in (H6). Although ICL and ECL indicate that
more cognitive capacity should be free in the exploRNN con-
dition, participants did not invest that cognitive capacity
into GCL. This could be because there might already be
high investment in GCL in both groups. Another explanation
could be that since participants in the text group perceived the
learning content as more difficult, they might have invested
more GCL to compensate for said difficulty.

System usability The results of the SUS questionnaire indi-
cate that our system is easy to use. This supports our
proposed visualization and interaction design and shows that
our design choice of creating an interactive environment as
a learning experience on RNNs matches our target audi-
ence well. Additionally, as participants rated our approach
as significantly more likeable, recommendable, and better
designed, users are likely to experience more joy, and be
more motivated when learning . In combination with the
reduced cognitive load exploRNN inflicts on users, we hope
that this could result in a larger number of users willing to

exploRNN

spend their time learning and more time spent learning per
user. In turn, we think that this might outweigh the advan-
tage in some areas of learning outcome with the more familiar
text-based learning environment. Further longitudinal stud-
ies on NN learning systems need to be done to investigate
this in more detail.

Qualitataive feedback. The open feedback forms also pro-
vided interesting insights. In general, participants seemed to
like exploRNN as a learning experience and even asked for
similar interfaces in other contexts. Furthermore, the amount
of information and our onboarding process seemed to make
exploRNN easily usable. Most of the criticism was related
to limitations regarding the freedom of interaction, which
we deliberately implemented to provide an overview rather
than in-depth technical details. Future work might reveal how
both an overview and full depth could be combined in NN
learning environments. We also learned why recall might be
better in the text condition. As participants mentioned, they
did not feel they needed to memorize specific terms to be able
to use RNNSs. This seems natural, as when programming or
using RNNs in the wild, remembering specific terms is also
not essential as they can be searched for. On the other hand,
transfer tends to be much more important when tasked with
solving real problems.

For learning material where transfer is important (DU),
as in recurrent networks, our descriptive results suggest
that interactive visualizations such as exploRNN might be
helpful. Additionally, the lower cognitive load and higher
perceived likeability of our interactive environment might
result in more learners spending more time with exploRNN.
Although we extensively evaluated exploRNN in this study,
it remains to be seen whether our insights are transferable to
other learning environments. If so, the development of future
explorables could be much better informed, indicating what
is important, what could be discarded, and what needs to be
improved on. While this study provides first insights into the
effectiveness of such educational NN exploration environ-
ments, we hope that similar evaluations of other applications
can broaden our insights.

10 Conclusions and future work

This paper presents the first interactive learning environment
specifically designed for RNNs. We propose a new visualiza-
tion approach for inspecting RNNs where different levels of
granularity are employed. To inform our visualization design,
we first introduced educational objectives for this setting.
Based on these objectives, we identified design challenges,
which we tackle in the proposed learning environment. We
hope that this process can be helpful for the development of
future interactive learning environments.

Subsequently, we tested the learning outcome, cognitive
load, and usability of this learning environment in an empir-
ical study. Our study is the first quantitative evaluation of
an interactive NN learning interface and, as such, provides
helpful insights and directions for future work. The results
of the user study indicate that while the raw learning out-
come was not improved compared to conventional methods,
exploRNN makes learning easier and more fun since cog-
nitive load was significantly reduced by exploRNN, while
subjective likeability was significantly improved. Based on
these findings, we propose to specifically design interactive
NN learning environments so that cognitive load is reduced.
For broadly accessible education, exploRNN can be used in
any modern browser at https://mi-pages.informatik.uni-ulm.
de/explornn/.

As mentioned, more user studies for similar educational
explorables could further advance the field and better inform
future visualization designs. One such possible research
direction is the suspected advantage of the text condition for
going back to previously presented information. Here, eye-
tracking studies and novel interaction designs might provide
new insights. Additionally, it would be interesting to inves-
tigate whether such systems indeed lead to more voluntary
learning and how that affects learning outcome.

Acknowledgements This work was funded by the Carl-Zeiss Schol-
arship for Ph.D. students. The datasets generated during and analyzed
during the presented study are available from the corresponding author
on reasonable request.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In: Advances in Neural
Information Processing Systems, pp. 1097-1105 (2012)

2. He,K.,Zhang, X.,Ren, S., Sun, J.: Deep residual learning forimage
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770-778 (2016)

3. Szegedy, C., Liu, W, Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-

@ Springer

A. Bauerle et al.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

volutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-9 (2015)

Kahng, M., Thorat, N., Chau, D.H.P., Viégas, F.B., Wattenberg,
M.: Gan lab: understanding complex deep generative models
using interactive visual experimentation. IEEE Trans. Vis. Comput.
Graph. 25(1), 1-11 (2018)

Norton, A.P., Qi, Y.: Adversarial-playground: A visualization suite
showing how adversarial examples fool deep learning. In: 2017
IEEE Symposium on Visualization for Cyber Security (VizSec),
pp. 1-4. IEEE (2017)

Karpathy, A.: Convnet]JS mnist demo. https://cs.stanford.edu/
people/karpathy/convnetjs/demo/mnist.html (2020)

Smilkov, D., Carter, S., Sculley, D., Viégas, F. B., Watten-
berg, M.: Direct-manipulation visualization of deep networks.
arXiv:1708.03788 (2017)

Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition
with deep recurrent neural networks. In: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 6645—
6649. IEEE (2013)

Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory
recurrent neural network architectures for large scale acoustic mod-
eling (2014)

Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H.,
Schmidhuber, J.: A novel connectionist system for unconstrained
handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell.
31(5), 855-868 (2008)

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey,
W., Krikun, M., Cao, Y., Gao, Q., Macherey, K. et al.: Google’s neu-
ral machine translation system: bridging the gap between human
and machine translation. arXiv:1609.08144 (2016)

Sweller, J.: Cognitive load theory. In: Psychology of Learning and
Motivation, vol. 55, pp. 37-76. Elsevier (2011)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735-1780 (1997)

Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependen-
cies with gradient descent is difficult. IEEE Trans. Neural Netw.
5(2), 157-166 (1994)

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of train-
ing recurrent neural networks. In: International Conference on
Machine Learning, pp. 1310-1318 (2013)

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase repre-
sentations using RNN encoder—decoder for statistical machine
translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1724—
1734 (2014)

Weiss, G., Goldberg, Y., Yahav, E.: On the practical computa-
tional power of finite precision RNNs for language recognition.
In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 740-745
(2018)

Britz, D., Goldie, A., Luong, M.-T., Le, Q.: Massive exploration
of neural machine translation architectures. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1442-1451 (2017)

. Hundhausen, C.D., Brown, J.L.: What you see is what you code:

a “live” algorithm development and visualization environment for
novice learners. J. Vis. Lang. Comput. 18(1), 2247 (2007)
Hundhausen, C.D., Douglas, S.A., Stasko, J.T.: A meta-study of
algorithm visualization effectiveness. J. Vis. Lang. Comput. 13(3),
259-290 (2002)

Schweitzer, D., Brown, W.: Interactive visualization for the active
learning classroom. In: Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education, pp. 208-212 (2007)
Guo, PJ.: Online python tutor: embeddable web-based program
visualization for CS education. In: Proceeding of the 44th ACM

@ Springer

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Technical Symposium on Computer Science Education, pp. 579—
584 (2013)

Guo, P.J., White, J., Zanelatto, R.: “Codechella: multi-user program
visualizations for real-time tutoring and collaborative learning. In:
2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 79-87. IEEE (2015)

Drosos, 1., Barik, T., Guo, P. J., DeLine, R., Gulwani, S.: Wrex:
A unified programming-by-example interaction for synthesizing
readable code for data scientists. In: Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pp. 1-12
(2020)

Ynnerman, A., Lowgren, J., Tibell, L.: Exploranation: a new sci-
ence communication paradigm. IEEE Comput. Graph. Appl. 38(3),
13-20 (2018)

Harley, A.W.: An interactive node-link visualization of convolu-
tional neural networks. In: International Symposium on Visual
Computing, pp. 867-877. Springer (2015)

Chung, S., Suh, S., Park, C., Kang, K., Choo, J., Kwon, B.C.:
Revacnn: real-time visual analytics for convolutional neural net-
work. In: KDD 16 Workshop on Interactive Data Exploration and
Analytics (2016)

Bloom, B.S., et al.: Taxonomy of educational objectives. vol. 1:
Cognitive domain, vol. 20, p. 24. McKay, New York (1956)
Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understand-
ing recurrent networks. arXiv:1506.02078 (2015)

Strobelt, H., Gehrmann, S., Pfister, H., Rush, A.M.: Lstmvis: a
tool for visual analysis of hidden state dynamics in recurrent neu-
ral networks. IEEE Trans. Visual Comput. Graph. 24(1), 667-676
(2017)

Strobelt, H., Gehrmann, S., Behrisch, M., Perer, A., Pfister, H.,
Rush, A.M.: Seq2seq-vis: a visual debugging tool for sequence-
to-sequence models. IEEE Trans. Visual Comput. Graph. 25(1),
353-363 (2018)

Ming, Y., Cao, S., Zhang, R., Li, Z., Chen, Y., Song, Y., Qu, H.:
“Understanding hidden memories of recurrent neural networks,” in
2017 IEEE Conference on Visual Analytics Science and Technology
(VAST).IEEE, pp. 13-24 (2017)

Cashman, D., Patterson, G., Mosca, A., Watts, N., Robinson, S.,
Chang, R.: Rnnbow: visualizing learning via backpropagation gra-
dients in rnns. IEEE Comput. Graph. Appl. 38(6), 39-50 (2018)
Shen, Q., Wu, Y., Jiang, Y., Zeng, W., LAU, A. K., Vianova,
A., Qu, H.: Visual interpretation of recurrent neural network
on multi-dimensional time-series forecast. IEEE Transactions on
Visualization and Computer Graphics (2020)

Garcia, R., Weiskopf, D.: Inner-process visualization of hidden
states in recurrent neural networks. In: Proceedings of the 13th
International Symposium on Visual Information Communication
and Interaction, pp. 1-5 (2020)

Soltau, H., Liao, H., Sak, H.: Neural speech recognizer: acoustic-
to-word LSTM model for large vocabulary speech recognition.
arXiv:1610.09975 (2016)

Manh, H., Alaghband, G.: Scene-LSTM: A model for human tra-
jectory prediction. arXiv:1808.04018 (2018)

Graves, A., Jaitly, N., Mohamed, A.-R.: Hybrid speech recognition
with deep bidirectional LSTM. In: 2013 IEEE Workshop on Auto-
matic Speech Recognition and Understanding, pp. 273-278. IEEE
(2013)

Park, S.H., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.:
Sequence-to-sequence prediction of vehicle trajectory via LSTM
encoder—decoder architecture. In: 2018 IEEE Intelligent Vehicles
Symposium (IV), pp. 1672-1678. IEEE (2018)

Gleicher, M.: Explainers: expert explorations with crafted pro-
jections. IEEE Trans. Visual Comput. Graph. 19(12), 2042-2051
(2013)

Munzner, T.: Visualization Analysis and Design. CRC Press, Boca
Radon (2014)

exploRNN

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in
visualizing dynamic graphs. In: EuroVis (STARs). Citeseer (2014)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for
information visualizations. In: Proceedings 1996 IEEE Symposium
on Visual Languages, pp. 336-343. IEEE (1996)

Amadieu, F.,, Mariné, C., Laimay, C.: The attention-guiding effect
and cognitive load in the comprehension of animations. Comput.
Hum. Behav. 27(1), 3640 (2011)

De Koning, B.B., Tabbers, H.K., Rikers, R.M., Paas, F.: Attention
guidance in learning from a complex animation: Seeing is under-
standing? Learn. Instr. 20(2), 111-122 (2010)

Khomenko, V., Shyshkov, O., Radyvonenko, O., Bokhan, K.:
Accelerating recurrent neural network training using sequence
bucketing and multi-gpu data parallelization. In: 2016 IEEE First
International Conference on Data Stream Mining and Processing
(DSMP). IEEE, pp. 100-103 (2016)

Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Jayarajan, A., Phan-
ishayee, A., Schroeder, B., Pekhimenko, G.: Benchmarking and
analyzing deep neural network training. In: 2018 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). IEEE,
pp. 88-100 (2018)

Peters, O.: Digital learning environments: new possibilities and
opportunities. Int. Rev. Res. Open Distrib. Learning 1(1), 1-19
(2000)

Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N., Yu,
P, Zhang, K., Cai, S., Nielsen, E., Soergel, D. et al.: Tensorflow.
js: Machine learning for the web and beyond. arXiv:1901.05350
(2019)

Bartram, L.: Perceptual and interpretative properties of motion for
information visualization. In: Proceedings of the 1997 Workshop
on New Paradigms in Information Visualization and Manipulation,
pp- 3-7 (1997)

Chevalier, F., Riche, N. H., Plaisant, C., Chalbi, A., Hurter, C.:
Animations 25 years later: new roles and opportunities. In: Pro-
ceedings of the International Working Conference on Advanced
Visual Interfaces, pp. 280-287 (2016)

Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effec-
tiveness of animation in trend visualization. IEEE Trans. Visual
Comput. Graph. 14(6), 1325-1332 (2008)

Lee, S., Kim, S.-H., Hung, Y.-H., Lam, H., Kang, Y.-A., Yi,
J.S.: How do people make sense of unfamiliar visualizations?: A
grounded model of novice’s information visualization sensemak-
ing. IEEE Trans. Visual Comput. Graph. 22(1), 499-508 (2015)
Berthold, K., Renkl, A.: Instructional aids to support a concep-
tual understanding of multiple representations. J. Educ. Psychol.
101(1), 70 (2009)

Kang, H., Plaisant, C., Shneiderman, B.: New approaches to help
users get started with visual interfaces: multi-layered interfaces and
integrated initial guidance. In: Proceedings of the 2003 Annual
National Conference on Digital Government Research, pp. 1-6
(2003)

Brachten, F.,, Briinker, F., Frick, N.R., Ross, B., Stieglitz, S.: On the
ability of virtual agents to decrease cognitive load: an experimental
study. Inf. Syst. e-Bus. Manag. 18(2), 187-207 (2020)

Ding, W.:. Draw convnet. https://github.com/gwding/draw_
convnet (2018)

Uchida, Y.: Convnet drawer. https://github.com/yu4u/convnet-
drawer (2019)

Bauerle, A., Van Onzenoodt, C., Ropinski, T.: Net2vis-a visual
grammar for automatically generating publication-ready CNN
architecture visualizations. IEEE Trans. Visual. Comput. Graph.
(2021)

Olah, C.: Understanding LSTM networks. https://colah.github.io/
posts/2015-08-Understanding-LSTMs/ (2015)

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

Elmgqpvist, N., Fekete, J.-D.: Hierarchical aggregation for informa-
tion visualization: overview, techniques, and design guidelines.
IEEE Trans. Visual Comput. Graph. 16(3), 439—454 (2010)
Jenny, B., Kelso, N.V.: Color design for the color vision impaired.
Cartograph. Perspect. 58, 61-67 (2007)

McCarthy, L.: P5.js. https://p5js.org/ (2020)

Pintrich, P.R. etal.: A manual for the use of the motivated strategies
for learning questionnaire (MSLQ) (1991)

Cronbach, L.J.: Coefficient alpha and the internal structure of tests.
Psychometrika 16(3), 297-334 (1951)

Klepsch, M., Schmitz, F., Seufert, T.: Development and validation
of two instruments measuring intrinsic, extraneous, and germane
cognitive load. Front. Psychol. 8, 1997 (2017)

Brooke, J., et al.: Sus-a quick and dirty usability scale. Usability
Eval. Industry 189(194), 4-7 (1996)

Bangor, A., Kortum, P., Miller, J.: Determining what individual
SUS scores mean: adding an adjective rating scale. J. Usability
Stud. 4(3), 114-123 (2009)

Koli¢-Vrhovec, S., Bajsanski, I., Roncevi¢ Zubkovic¢, B.: The role
of reading strategies in scientific text comprehension and academic
achievement of university students. Rev. Psychol. 18(2), 81-90
(2011)

Kiirschner, C., Seufert, T., Hauck, G., Schnotz, W., Eid, M.:
Konstruktion visuell-raumlicher repridsentationen beim hor-und
leseverstehen. Z. Psychol./J. Psychol. 214(3), 117-132 (2006)
Glenberg, A.M., Wilkinson, A.C., Epstein, W.: The illusion of
knowing: failure in the self-assessment of comprehension. Mem.
Cognit. 10(6), 597-602 (1982)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alex Bauerle received the mas-
ter’s degree in media informat-
ics from Ulm University in 2017
and is now working at a research
associate at the Visual Comput-
ing Group at Ulm University. His
current research interests are the
visualization of neural networks
to generate better understanding
around these techniques.

@ Springer

A. Bauerle et al.

@ Springer

Patrick Albus completed his mas-
ter’s degree in psychology at Ulm
University with a focus on Work
and Organizational Psychology
and Clinical Psychology. Since
September 2018, Patrick Albus
has been working as a research
assistant at the Institute of Psy-
chology and Education, Depart-
ment Learning and Instruction,
conducting research in the field
of instructional design and virtual
reality.

Raphael Stork studied media
informatics at the Ulm Univer-
sity and received his bachelor’s
degree in 2020. His main inter-
ests involve the development of
learning applications and the con-
cepts of neural networks and other
forms of artificial intelligence.

Tina Seufert is Professor and head
of the Department for Learning
and Instruction since 2008. Her
research interests deal with theo-
retical and practical questions on
how to foster learning processes
by instructional means. These
include the areas of multiple rep-
resentations, virtual reality,
aptitude-treatment interactions and
cognitive load. She also develops
and tests pedagogical concepts for
various learning scenarios such as
e-learning, HCI, and continuing
education.

Timo Ropinski is a professor at
Ulm University, where he is head-
ing the Visual Computing Group.
Before moving to Ulm, he was
Professor in Interactive Visualiza-
tion at Linkoping University in
Sweden, where he was heading
the Scientific Visualization Group.
He has received his PhD in com-
puter science in 2004 from the
University of Miinster, where he
has also completed his Habilita-
tion in 2009.

SYMPHONY: COMPOSING INTERACTIVE
INTERFACES FOR MACHINE LEARNING

Alex Bauerle?, Angel Alexander Cabrera’, Fred Hohman, Megan Ma-
her, David Koski, Xavier Suau, et al. “Symphony: Composing Interac-
tive Interfaces for Machine Learning.” In: Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (2022), pp. 1-14

This work is published under the terms of the Creative Commons
Attribution 4.0 License (CC BY 4.0), https://creativecommons.org/
licenses/by/4.0/

93

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Symphony: Composing Interactive Interfaces for Machine

Learning
Alex Bauerle' Angel Alexander Cabrera’ " Fred Hohman
Ulm University Carnegie Mellon University Apple
Ulm, Germany Pittsburgh, PA, USA Seattle, WA, USA
alex.baeuerle@uni-ulm.de cabrera@cmu.edu fredhohman@apple.com

Megan Maher David Koski Xavier Suau
Apple Apple Apple
Cupertino, CA, USA Cupertino, CA, USA Barcelona, Spain
megan_maher@apple.com dkoski@apple.com xsuaucuadros@apple.com
Titus Barik Dominik Moritz
Apple Apple
Seattle, WA, USA Pittsburgh, PA, USA
tbarik@apple.com domoritz@apple.com
Computational Notebooks Symphony Reports and Dashboards
import symphony Interactive Components for Machine Learning 'E:F
sses —_—
I sses
I ::: -

|

Code Environments

Web-based Uls

Figure 1: Symphony applies techniques from machine learning (ML) documentation, data visualization, and interactive pro-
gramming to create ML interfaces with interactive, task-specific components. Diverse ML practitioners can explore their data
and analyze their models where they work, both in computational notebooks and in web-based dashboards.

ABSTRACT

Interfaces for machine learning (ML), information and visualiza-
tions about models or data, can help practitioners build robust and
responsible ML systems. Despite their benefits, recent studies of
ML teams and our interviews with practitioners (n=9) showed that
ML interfaces have limited adoption in practice. While existing ML
interfaces are effective for specific tasks, they are not designed to
be reused, explored, and shared by multiple stakeholders in cross-
functional teams. To enable analysis and communication between

“Both authors contributed equally to this research.
TWork done at Apple.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI °22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3502102

different ML practitioners, we designed and implemented Sym-
phony, a framework for composing interactive ML interfaces with
task-specific, data-driven components that can be used across plat-
forms such as computational notebooks and web dashboards. We
developed Symphony through participatory design sessions with 10
teams (n=31), and discuss our findings from deploying Symphony
to 3 production ML projects at Apple. Symphony helped ML prac-
titioners discover previously unknown issues like data duplicates
and blind spots in models while enabling them to share insights
with other stakeholders.

CCS CONCEPTS

« Human-centered computing — Interactive systems and tools;
Visual analytics; - Computing methodologies — Machine learn-
ing; Artificial intelligence.

KEYWORDS

Machine learning, Al, visualization, documentation, interactive
programming, computational notebooks

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

ACM Reference Format:

Alex Béuerle, Angel Alexander Cabrera, Fred Hohman, Megan Maher, David
Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. Symphony:
Composing Interactive Interfaces for Machine Learning. In CHI Conference
on Human Factors in Computing Systems (CHI "22), April 29-May 5, 2022, New
Orleans, LA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3491102.3502102

1 INTRODUCTION

Successfully deploying machine learning systems in production is
a complex, collaborative process that involves a wide range of ML
practitioners, from data scientists and engineers to domain ex-
perts and product managers. A substantial amount of research has
gone into creating ML interfaces for analyzing and sharing insights
about ML systems that practitioners can use to better understand
and improve deployed ML products. We describe machine learn-
ing interfaces as static or interactive artifacts, visualizations, and
information that communicate details about ML data and mod-
els. ML interfaces include documentation methods (e.g., Model
Cards [46], Datasheets [17]), visualization dashboards (e.g., What-if
Tool [62], ActiVis [33], among many others [21]), and interactive
programming widgets (e.g., ipywidgets [32], Streamlit [31]) that
give practitioners insights into what their datasets contain and
how their models behave. Despite the benefits and breadth of ML
interfaces, recent studies have found that they are not as widely
used and shared in practice as expected [38, 68]. This underuse can
lead to missed data errors and model failures, a lack of shared team
understanding of model behavior, and, ultimately, deployed ML
systems that may be biased [8] or unsafe [47].

To understand why ML interfaces are not used more frequently,
we interviewed 9 ML practitioners at Apple about their current
machine learning practice and workflows. We found that while
ML practitioners want to use them, current interfaces have limita-
tions that make them either insufficient or too time consuming to
use. One category of ML interfaces are ML documentation methods,
such as Model Cards [46] and Datasheets [17], which describe the
details and records the provenance of an ML system’s data and
model. Documentation methods often lack the interactive tools and
visualizations necessary for specific analyses and have to be manu-
ally authored and updated separately from where ML development
happens. Another category of interfaces, visualization dashboards,
consist of multiple coordinated views tailored to specific domains
and tasks. ML practitioners must learn a new platform and wrangle
their data into the right format in order to use these bespoke sys-
tems, which also require significant work to reuse for different tasks.
Finally, interactive programming widgets can render web-based ML
visualizations directly in code environments. However, widgets
typically cannot be used outside of the platform in which they were
created and often lack complex visualizations required by modern
ML models and unstructured data—non-tabular data types such as
images, videos, audio, point-clouds, sensor data, etc. Overall, we
found that while current ML interfaces work well for specific tasks
and platforms, they are not designed to be reused, explored, and
shared by diverse stakeholders in cross-functional ML teams.

Our formative research showed that ML work requires bespoke
visualizations for complex models and data types which work across
the different platforms ML practitioners use. To address these needs,

Béuerle and Cabrera, et al.

we combined the affordances of existing ML interfaces to design and
implement Symphony, a framework for creating and composing
interactive ML interfaces with task-specific, data-driven visualiza-
tion components. Symphony supports two popular platforms used
by ML practitioners, code environments such as Jupyter notebooks
and no-code environments such as web-based Uls (Figure 1). Sym-
phony components are JavaScript modules that use custom code or
existing libraries to create task-specific visualizations of structured
and unstructured data. Each component is also fully interactive:
users can filter, group, or select instances either through a UI tool-
bar or code. These interactions are reactively synchronized across
Symphony components, enabling linked visualizations. Symphony’s
cross-platform availability enables ML practitioners to use the same
components for both exploring and sharing insights about their
ML systems (Figure 2).

We worked with ML teams at Apple to both design Symphony
and apply it to deployed ML projects. To collect the diverse require-
ments and use cases for ML interfaces, we conducted participatory
design sessions with 10 ML teams with a total of 31 ML practitioners.
Informed by these sessions, we implemented a set of 11 components
supporting a range of different models and data types. We then
worked with 3 teams from the design sessions to deploy Symphony
in their machine learning workflows and ran a think-aloud study
with them to qualitatively evaluate Symphony.

Teams using Symphony with their real-world data and models
found surprising insights which they had not previously known,
such as duplicate instances, labeling errors, and model blind spots.
Participants also described a variety of use cases for Symphony,
from creating automated dataset reports to analyzing model perfor-
mance in computational notebooks. Moreover, participants that did
not previously share their analyses also showed interest in using
Symphony in their teams to better communicate the state of their
ML system with other stakeholders.

The main contribution of this work is Symphony, a framework for
composing interactive ML interfaces with task-specific, data-driven
visualization components. To design Symphony, we conducted for-
mative interviews, participatory design sessions, and case studies
on deployed ML workflows with a total of 39 ML practitioners
across 15 teams. Symphony enabled ML practitioners to discover
significant issues like dataset duplicates and model blind spots,
and encouraged them to share their insights with other stakehold-
ers. Symphony combines the following principles to improve upon
existing ML interfaces:

e Data-driven ML interfaces derived from and updated with
ML data and models.

o Task-specific visualizations for unstructured data and

modern machine learning models.

Interactive exploration tools for exploring different di-

mensions of an ML system.

e Reusable components that can be used, composed, and
shared across different platforms.

2 BACKGROUND AND RELATED WORK

Symphony bridges three areas of related work: ML documentation
methods, data visualization dashboards, and interactive program-
ming environments. First, the Symphony framework can be used

Symphony

A ' Symphony in Notebooks

Cifar 10 Symphony Symphony

Description © | cait

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

B ' Symphony in Web-based Uls

cifar10 () Use Symphony.

@ oownioad | Duplicates @ @ Download || Settings

Overview cngmeorouno g | S ©
andidate Group. E]
The CIFAR-10 datas in 10 classes, with 6000 images per D) || garmpies por page 150
class. There are 501 s o = @& . ° °
2 o an ae an % aa” N 7 aa ae
’ S8 22, S 2D 3B o2 3D 2% S 2, 2D 3D -
Dataset Collection a e = o Ly
™~ =% go ™
The origi d collected AMIT and NYU YN T-1F a 3
used keywords from the WordNet database to search for images on search platforms like Google, . i h
Fiicks and Altavista. They then removed perfect duplicates and images with a signficant amount of | @ Show 15 more Y Avoly |
‘white pixels be The imag to 32x32 -
- © pixels. Candidate Group 1 (@) Group
B
= P ana To create the CIFAR-10 dataset,researchers at the University of Toronto took a subset of the tiny P Y Y N S
images dataset and labeled them across 10 object classes. The dataset has a total of 60,000 55 JEE JEC JEG PG APEE PG PEEPEE PO PO PO]
— images with 6,000 images in each of the 10 classes. P Y TP < Group |
Dataset Labeling e o Selected [x clear | [@i copy |
The datasat was labeled by paid students. The 10 labels are sirplanes, cars, birds, cats, deer, dogs,
frogs, hrsss, hi, and ks i 9% Shoing 1109 of 216 resuls < pagetorza > Q=00 =
rey—— " o : : (@ Download | L] Ll L] L
© Scatterplot @ Category column: label & Download [¢ Matrix © & Download - o go
L ~ = an
. 20 2B 22 25 30 2
Double-click to recenter. Shift-click and drag to lasso-select.
o deer was labeled as cat in 92 instances. 5 :-\" i-.' an’ :-\" :«'

Counts Observed

Showing 11033 0f 33results < Pagelof1 >

Figure 2: A demonstration of Symphony running in both (A) a computational notebook and (B) a web-based UI with the same
visualization components and code. In a computational notebook, an ML practitioner passes their data and model outputs
directly from Python variables like Pandas Data Frames [45] to Symphony components. The ML practitioner can then export
the components to a self-contained, web-based UL This example shows Symphony loaded with the CIFAR-10 [40] dataset and
a trained image classification model. After reading a textual description of the dataset, a user found and selected duplicate car
instances which were reactively highlighted in the projection component and the confusion matrix. The user then explored
the confusion matrix to determine if the duplicates could be impacting model performance.

to write and share ML documentation. Second, Symphony compo-
nents can show complex visualizations and be composed into visual
analytics dashboards to help ML practitioners make sense of ML
data and models (Section 2.2). Lastly, Symphony components can
be used in and exported from interactive programming environ-
ments, like computational notebooks, which are often used by ML
practitioners (Section 2.3).

2.1 Documenting Data and Models

A variety of documentation methods exist to help ML practitioners
track and communicate details about their data and models. Without
knowing what a dataset contains or what a model has learned,
teams can inadvertently release Al products with issues like safety
concerns and biases [13, 15, 53, 54], as seen in numerous deployed
systems [8, 19, 55, 63].

Since machine learning models are a direct result of the data
they were trained on, it is important to first understand the data
behind an ML system. Datasheets for Datasets [17] applies the idea
of datasheets in electrical engineering to describe important at-
tributes of a dataset, such as collection methods and intended uses.
Similar work has focused on specific types of data, for example,
Data Statements [7] are tailored to natural language processing
datasets. These guidelines describe what should be included in
documentation, not how an author can create or share the result-
ing artifact [38]. Additionally, these documents are static IEX or
text documents that are disjoint from the backing data and models
and have to be manually updated. Since there is heterogeneity in

what information is important for each dataset, Holland et al. [23]
proposed the more general concept of Dataset Nutrition Labels,
modular graphs describing different aspects of a dataset. Like Sym-
phony, these labels use modular visualizations, however, they focus
on simple aggregate visualizations without displaying data samples
and do not support platforms where ML practitioners do their work.

A parallel line of research has focused on documenting machine
learning models. Model Cards [46] and FactSheets [4] are similar
concepts to Datasheets that can include important information and
details about machine learning models. These model reports include
information ranging from the model type and hyperparameters to
aggregate metrics and ethical considerations. Similar to Datasheets,
these types of documentation are disjoint from the backing data
and do not include interactive visualizations of model details and
performance metrics.

2.2 Visualization for Machine Learning

There are a growing number of visualization systems that help ML
practitioners make sense of modern ML systems with unstructured
datasets and machine learning models [21]. Visualizations can help
ML practitioners in tasks such as auditing models for bias [9], un-
derstanding the internals of deep learning architectures [22], and
guiding automatic model selection [10]. A full review of this lit-
erature is out of scope for this work, but we provide a sample of
representative systems to highlight the types of visualizations that
could be implemented as Symphony components.

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

Data science work often starts with and leads back to under-
standing the backing data. Modern machine learning models and
tasks use unstructured data like images and audio that cannot be
visualized and explored with tables and histograms. Systems like
Know Your Data [28] and Facets [27] are visualization dashboards
for exploring unstructured data. Other visual analytics systems
process the data further to derive insights like outliers [11], biases
in a dataset [61], or mislabeled data instances [66]. With a deeper
understanding of their data, ML practitioners can more effectively
debug and improve their models.

The models ML practitioners use are often large, complex black-
box models like deep learning systems. Visualization systems like
Summit [22] and Seq2Seq-Vis [57] can help ML practitioners de-
velop a better mental model of how their machine learning sys-
tems work and what they are learning. Another set of systems,
including Model Tracker [3], Squares [50], AnchorViz [12], Con-
fusionFlow [20], What-if Tool [62], and MLCube [34], focus on
performance analysis and provide different views of a model’s er-
rors Lastly, there are tools for detecting potential biases [1] or
systematic errors [6, 64] in training data. These various of visual-
izations can be repackaged as Symphony components, for example,
we implement a version of FairVis [9] as a component for auditing
classifiers for bias.

Lastly, there are integrated systems that help ML practitioners
both implement and visualize ML models. One of the first systems
describing such an integrated system is Gestalt [48], a develop-
ment environment with visualizations for training and analyzing
classification models. A subsequent system focused on interactive
machine learning is Marcelle [16], which uses composable stages
and visualizations to create interactive ML interfaces. In contrast to
Gestalt and Marcell, Symphony is focused on the analysis stage of
ML systems, and includes important features such as cross-platform
support, reactivity, and a consistent data API which are not available
in Gestalt and Marcelle.

ML data and model visualizations are often deployed as visual
analytics dashboards that are separate from both interactive pro-
gramming environments that ML practitioners work with and ML
documentation shared with other stakeholders. This separation lim-
its who can use visualizations to understand ML data and models.
Symphony aims to bridge these worlds by bringing visualizations
both into notebooks where data work happens and into the docu-
mentation shared with other stakeholders.

2.3 Interactive Programming Environments

ML practitioners often use interactive programming environments
for exploring and modeling data since they can interact with and
iterate on their ML systems [35]. These environments are most com-
monly implemented as computational notebooks like Jupyter [37],
DataBricks [26], and Observable [29]. While computational note-
books have extensions for creating interactive visualizations, such
as the ipywidgets API [32] for Jupyter, they are often underused [5]
and hard to share [18, 35].

Several libraries exist for interactively visualizing data in note-
books. Graphing libraries such as Altair [58] and Plotly [30] allow
users to create interactive charts but only support a finite set of
graphs and require users to manually define what visualizations

Béuerle and Cabrera, et al.

they want to use. Lux [41] and B2 [65] lower the cost of using visu-
alizations in notebooks by automatically providing relevant charts
for users’ data frames. These approaches help analyze tabular data,
but they lack the specific visual representations needed for machine
learning development.

A separate challenge is sharing visualizations and other note-
book outputs outside of the notebook context. Voila [60] tackles
this challenge directly by exporting full Jupyter notebooks to a
hosted website. ML practitioners can use Voila to share notebooks
that contain Symphony components, but it requires a Python kernel
to be running and Voila does not provide any visualizations itself.
Two visualization frameworks similar to Symphony, Panel [24] and
Plotly Dash [49], use independent components to create visualiza-
tions that can be used in both Jupyter notebooks and standalone
websites. However, these tools also have limitations for creating
complete ML interfaces: Panel visualizations are tied to the Jupyter
ecosystem and lack interactivity without a Python backend, while
Plotly Dash primarily supports Plotly charts and does not easily ex-
tend to custom visualizations. Symphony provides components that
are fully interactive in both notebooks and web Uls, and support any
JavaScript-based visualization. Additionally, Symphony’s shared
state synchronizes its components, enabling reactive brushing and
linking between views.

More recent interactive programming environments have moved
away from the notebook paradigm. For example, in the Stream-
lit [31] platform, users write Python scripts using a library that
renders interactive components in a separate website. While Stream-
lit supports interactive components like Jupyter notebooks, it is
primarily an environment focused on designing web applications
rather than exploratory data science or ML reporting. Exploratory
analysis is still often done in notebooks, and Streamlit requires
users to learn a new platform. Other platforms are moving away
from programming altogether, such as Glinda [14], a declarative
language that lets ML practitioners describe analysis steps in a
domain-specific language. Glinda does not define any specific visu-
alizations, but it could be complemented by Symphony components.
Since Symphony components are standalone JavaScript modules,
future wrappers could integrate Symphony components into data
science environments like Streamlit and Glinda.

3 FORMATIVE INTERVIEWS

To understand how ML interfaces are used in practice, we con-
ducted 7 semi-structured interviews with 9 participants at Apple.
We recruited participants through internal emails and messaging
boards and selected participants across a range of different roles,
including engineers, designers, researchers, and testing roles that
work on teams to build and deploy ML systems. Each interview
was conducted over a video call and lasted about an hour. First,
we asked participants about how they currently create and use dif-
ferent ML interfaces like documentation, visualization dashboards,
and widgets. We then asked them what the main limitations and
pain points are in current tools and what types of improvements
they would find helpful. From these need-finding interviews we
identified the following themes.

Use cases for ML interfaces. All participants agreed that creating
and sharing ML interfaces can help them build more robust and

Symphony

capable ML products. Participants described use cases of ML in-
terfaces in myriad tasks, such as “flagging failures for review,” (P2)
“detecting systematic failures,” (P4) and “fairness and bias education.”
(P1) Participants also mentioned stages across the entire ML process
in which ML interfaces can be useful, from “dataset curation and
sharing” (P5) to analysis “after an ML model has been trained,” (P7)
or “in all stages” (P1). Consequently, since different stakeholders
involved in an ML product need specific views of the data and
models, ML interfaces must be flexible enough to support analysis
across numerous tasks and domains.

Ad-hoc tools and analyses. While all participants detailed clear
use cases for ML interfaces, they also mentioned limitations pre-
venting them from using existing tools or sharing insights. One
participant bluntly stated “right now, we basically have no tools”
(P3) for analyzing ML systems. Instead, participants rely on ad-hoc,
hand-crafted visualizations for their specific analyses. For example,
one of our participants said their process for looking at instances
is to “manually examine icons in a file explorer.” (P9) Another par-
ticipant “looks at handcrafted summaries of select data subsets” (P4)
to do model analysis. Larger teams with more resources may have
bespoke tools, such as one participant that “use[s] a team-internal
tool to analyze data” (P6). Overall, a lack of adequate tooling leads to
ML practitioners using one-off, manual tools or ML teams investing
in their own, custom visualization systems.

Limitations of existing ML interfaces. Participants detailed a vari-
ety of technical roadblocks and time-consuming processes prevent-
ing them from using existing ML interfaces. Many tools require
users to wrangle and export their data into a specific format be-
fore loading it into a custom system or dashboard. However, as
one participant stated, “we do not have a lot of time for creating
such visualizations:” (P1) ML practitioners simply do not have the
bandwidth to do the setup and data wrangling work necessary to
use separate systems. ML practitioners’ main priority is working
on data and models, and “if it takes longer than 5-10 minutes, I am
not going to [use an ML interface] immediately” (P6).

Five participants mentioned explicitly that they do not use ML
interfaces because they are not available in the environments where
they work, and that “people would want to use easier tools.” (P3) For
example, “many data scientists want to explore their data in notebooks’
(P2) without having to open a separate system. Additionally, since
data and models update frequently, one participant wanted to “start
a job with checkboxes and buttons” (P6) and produce a self-updating
web UI that they would not have to manually author.

Lastly, the teams we talked to work with myriad data types, such
as video, 3D point cloud, tabular, image, and audio data, and desired
bespoke visualizations supporting their analysis needs. One par-
ticipant mentioned running and visualizing specific data analyses,
and “would want to specify algorithms because our problems are very
specialized.” (P8) However, current data science tools often only
provide visualizations for a limited set of data types and models.

>

Lack of communication between stakeholders. As a consequence
of limited, isolated interfaces, participants described various chal-
lenges for communicating and sharing insights. Since different
stakeholders prefer different environments, such as code-based
notebooks or standalone dashboards, it can be challenging to share

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

insights with others. In addition to sharable interfaces, participants
also wanted cross-platform support for themselves, as one partici-
pant put it, ‘T would like both an environment for experimentation
and always there reliable visualizations.” (P2)

It can also be difficult to transfer visualizations and findings
between platforms that different stakeholders work with. One par-
ticipant lamented that ‘T am often not invited to the table until things
go wrong,” (P4) and in some teams “designers often times don’t have
access to data and model results.” (P3) In turn, decisions about ML
systems are made without all team members having a shared under-
standing of the current state and limitations of the project. Despite
these current limitations, participants thought that “fostering a
culture of sharing insights would be great.” (P3)

4 DESIGN GOALS

Based on the challenges we identified in the formative interviews,
we found that a successful framework for ML interfaces must fulfill
the following:

Enable data-driven ML interfaces. ML interfaces are often dis-
connected from an ML system’s backing data and model outputs [17,
46]. ML practitioners should be able to create visualizations that
are up-to-date and reflect an ML systems’ current state.

Support task-specific visualizations. Specialized visualizations
are often needed to make sense of the unstructured data and deep
learning models increasingly used in machine learning [51, 59]. ML
interfaces should support these task-specific visualization needs.

Provide interactive exploration tools. Static ML interfaces only
show a fixed subset of the possible analyses stakeholders may
need [38]. Interactive visualizations let different stakeholders dis-
cover and validate the patterns most relevant to their goals.

Make components reusable. Different stakeholders explore ML
systems in different environments, such as computational note-
books and web-based Uls. ML interfaces should be available across
environments and reusable for different domains and tasks.

5 SYMPHONY: A FRAMEWORK FOR
COMPOSING INTERACTIVE INTERFACES
FOR MACHINE LEARNING

Based on these design goals we built Symphony, a framework for
composing ML interfaces from interactive visualization compo-
nents. ML practitioners can explore their data and models using
Symphony components in a computational notebook and then com-
bine and transform them into web-based Uls. Symphony consists of
three primary features: modular components (Section 5.1), environ-
ment wrappers (Section 5.2), and interaction tools (Section 5.3). In
the following, we describe the specific design and implementation
choices we made to support these goals.

5.1 Modular Components

The building blocks of Symphony are independent, modular com-
ponents designed for task-specific visualizations (Figure 3, right).
A Symphony component is a JavaScript module that renders a web-
based visualization. We use the Svelte! web framework as the base

Thttps:/svelte.dev

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

Symphony Input

Data Table & Files

Interaction Tools

Ul Interaction

Filter

Group

Code Interaction

In [1: report.set_filter('d.label == "dog"')

Béuerle and Cabrera, et al.

Symphony System Wrapper

Shared State Components
o etmce it L :
a Vv - = |
Groups Selection > > S =

Y

Filters Settings

Figure 3: The technical overview of the Symphony framework. A dataset and files are passed into the Symphony wrapper for
a particular platform. The wrapper holds the shared state which is reactively updated and modified either by standardized

interaction tools or components themselves.

of Symphony components, but visualizations can be written using
any JavaScript code or library. JavaScript has a rich ecosystem of
libraries and APIs for creating interactive visualizations, like D3 and
Three.JS, which can be used to create Symphony components. This
flexibility is important for visualizing unstructured ML datasets,
something that is not supported by common charting libraries like
Matplotlib [25] or Altair [58].

Each Symphony component is passed three parameters: a meta-
data table, derived state variables like grouped tables, and references
to raw data instances like images. The metadata table contains a
row for each instance from which a set of state variables, such
as filtered and grouped tables are derived (state variables are de-
scribed in detail in Section 5.3). Components are also passed a URL
from which to fetch raw data samples such as images or audio
files. Symphony controls these three parameters, synchronizing and
reactively updating them across components.

New components can be created using a cookiecutter template
that generates all the boilerplate code needed to integrate com-
ponents with Symphony. In the cookiecutter code, a component
developer modifies the front-end JavaScript to create their custom
interactive visualization. They can make use of the parameters pro-
vided by Symphony to base their visualization on the data provided
by a ML practitioner. In the following Subsection we show how
these modular, reactive components can then be composed by a
Symphony wrapper to be used across different platforms.

5.2 Platform Wrappers

The primary goal of using self-contained components is to com-
pose and share them as flexible interfaces across different platforms.
This is done using Symphony’s next main feature, wrappers, which
connect components with a particular backing platform. These
wrappers have two primary functions - first, passing data from a
platform to Symphony in the correct format, and second, rendering
Symphony components in the platform’s UL To support both ex-
ploring and sharing ML interfaces, we implemented wrappers for
the two platforms most requested in our formative study, Jupyter
notebooks and web Uls. These platforms are also representative
of the two environments we found to be most used by ML practi-
tioners: programming environments for exploratory analysis and
web-based Ul interfaces for sharing insights.

The Python wrapper bundles Symphony components as pack-
ages which can be published to a package index like PyPI for use
in notebooks and Python scripts. To make Symphony interfaces
available in Jupyter notebooks, Symphony’s Python wrapper also
makes each component an ipywidget [32]. The ipywidgets API
renders web-based widgets in the Jupyter notebook UI and syn-
chronizes its variables with the Python kernel. Data tables like
Pandas DataFrames or Apache Arrow tables, along with an end-
point for raw instance files, can be passed to Symphony’s Python
wrapper to connect components to the data.

Using Symphony in Python (e.g. a notebook)

import pandas as pd
from symphony import Symphony

Import three Symphony components

from symphony_summary import SymphonySummary

from symphony_list import SymphonylList

from symphony_duplicates import SymphonyDuplicates

Load data
IMAGE_PATH = 'images/cifar/'
metadata_table = pd.read_parquet('table.parquet')

Initialize Symphony
symph = Symphony(metadata_table, files_path=IMAGE_PATH)

Use Symphony components

symph .widget(SymphonySummary)
symph.widget(SymphonyList)
symph.widget(SymphonyDuplicates)

The second wrapper we implemented is for standalone, web-
based dashboards. To support this, each Symphony component
overrides an export function which is used by Symphony to trans-
form selected visualization components from Python code into
web-based Uls. Components can be configured before export to be
placed on different subpages and arranged within these pages to fit
particular use cases, as shown in Figure 5. These dashboards can
be authored in programming environments and then exported as a
statically hosted websites. The wrapper for web-based Uls provides
an HTML file which imports components as independent JavaScript
(ES6) modules. Since Symphony components are compiled to pure
JavaScript files, the standalone dashboard does not need a dedicated
backend and can be hosted on a static file server.

Symphony

List View @

(»] ®»)))) > (»)) >
> > O] j) »))

®) ®)

Showing 1to 2 of 2 results

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

-] Downluaﬂ Settings
" Show unfiltered charts o©
Samples per page 20 A
Filter
d.category == 'car_horn
X Clear | | ¥ Apply
»)) ®)
Group
take @
X Clear | | € Group C
AX BIIX ClIX
< Pagelof2z > Selected [clear | [8 copy
]

L i m

®J ®J ®)

< Pagelof1 >

Figure 4: A list component looking at audio samples from the ESC-50 environmental noise classification dataset. The toolbar
on the right has Ul elements for the different interactions tools available in Symphony. The user (A) has increased the number
of instances shown per page, and then (B) filtered to see only car horn noises. They then (C) grouped by the “take” feature,
and (D) selected a set of interesting instances. In a notebook a user can also set these parameters from code.

Compose a Symphony web dashboard

symph.widget(SymphonySummary, page="Overview")

symph.widget(SymphonylList, page="Overview", width="M")

symph.widget(SymphonyDuplicates, page="Data Analysis",
width="M", height="L")

Export Symphony as a standalone web dashboard
symph.export('./standalone’, name="Cifar 10")

Run the Symphony dashboard in a web browser
symph.serve_static('./standalone")

New wrappers can be written to include Symphony components
in other platforms. For example, we began to explore how we can
enable users without programming experience to create Symphony
UIs using a drag-and-drop dashboard builder. We have also experi-
mented with integrating Symphony components in other interactive
programming environments like Streamlit [31] or Glinda [14].

5.3 Interactive Exploration Tools

The final key feature of Symphony is a set of tools for interacting
with and exploring data. Each component has the same interaction
tools, and changes are reactively synchronized between compo-
nents both in Jupyter notebooks and in web-based Uls. For the
web-based UI, state changes are also saved in the URL, allowing
stakeholders to share specific findings. Symphony’s interaction
tools were derived both from common interactions described by
participants in the formative study and findings from visualization
research [2, 67]. We included a subset of tools that we found to
be important for the specific components we implemented. These
tools include data filtering, grouping, and instance selection. Addi-
tional interaction tools can be added to Symphony by updating the
main Symphony package and platform wrappers with the new tool,
which is then available on different platforms and synchronized

across components. New interaction tools can then be accessed and
modified by individual Symphony components.

Users have three ways of using Symphony’s interaction tools:
through a Ul toolbar, Symphony components themselves, or code.
The Ul toolbar (Figure 4, right) is available both in interactive pro-
gramming environments (Figure 2, left) and the web-based dash-
boards (Figure2, right). We implemented this toolbar as another
Symphony component, which is shown alongside each component
in Jupyter notebooks for convenient access, and displayed as a
consistent sidebar for the web-based dashboard. Apart from the
UI toolbar, components not only have direct access to the global
Symphony state but can also modify it based on user interaction. For
example, individual data samples can be selected from whichever
component they are viewed in. Thus, component developers can
add custom controls to manipulate Symphony’s state. Lastly, ML
practitioners may want to make more complex data transformations
that cannot be mapped to UI components. For such use cases, Sym-
phony’s state can also be directly be manipulated within Python.
Whether in a notebook or Python script, users can set and retrieve
any of the state variables. In Jupyter notebooks, this allows for fluid
interactions between Ul and code in the style of Kery et al. [36]. Ad-
ditionally, Symphony’s state can be extracted from the web-based
UI and loaded into Python-based notebooks, making findings from
shared Symphony dashboards available to the ML practitioners in
code-based environments.

Get selected items in GUI as a Python list
selected_items = symph.get_selected()

Set selected items in GUI from a Python list
symph.set_selected(python_list)

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

A ' Dataset Overview

Description © [z cu ® (@ car & Download
Overview D | tion. output distributs ton
- —
Dataset Collction —
‘The original tiny images dataset was collected by researchers at MIT and NYU. The researct hers. I
——
Fick and st —
32332 —
it
Dataset Labeling e
frogs, horses, ships, and trucks. List View © & Download
Accessing the Dataset Instance List
sttt Ha F‘E! Cifa
St N T st T L [
st e RHEENEDARSNE
- ~ .3 F
- el 1 Y
e o arderto classiy.Developers . =
B Data Cleaning

Duplicates @ ategory column: label B Download
S~ koo, St ik oot

B 2 S8 20 2B o0, 2 AR S g2 2B 2D

a0, 30 S8 3 £ 30 NS 2% % ’ é

Candidate Group 1] 45, _

e e I e T oL) & 3

- £

SGHGLEanas 4 e

Familiarity 8 aubue @ © @ Dowrlosd
—— 5

yrEELY MEY7ESRwSaEY 8 -

+RENETFVMONSEHETSEEERT
EENRLyAESENSEA e R G
wNECEYA EEREETNEA Bl __

< papereteo >

C Model Analysis
Hierarchical Confusion Matrix © ategory cok
dog vas i ogin 25 e,
couns J—
LanE

SR . 1
EEREEREEE 1 1 SN

FairVis © Labelcolumn: label

Accuracy ©

Accuracy

Figure 5: Symphony supports a diverse range of ML tasks.
Here we show examples of three distinct dashboards: (A) A
dataset overview with a textual description of the data’s ori-
gin, distribution plots, and example data instances. ML prac-
titioner can use this report to understand what a dataset con-
tains and what tasks they can use it for. (B) A data validation
dashboard to help ML practitioners track issues during data
collection, such as duplicate or out-of-distribution instances.
(C) A model analysis dashboard for exploring the perfor-
mance of an ML system. Users can find groups of incorrectly
classified instances in the embedding and drill down into
fairness metrics with respect to different data subgroups.

Béuerle and Cabrera, et al.

6 PARTICIPATORY DESIGN SESSIONS

With the initial Symphony framework, we conducted a series of
participatory design sessions to understand the specific needs of
ML teams and design and develop an initial set of Symphony compo-
nents. We conducted 10 sessions where each session had between
1 and 7 people, with a total of 31 people across all sessions. We
recruited and contacted teams via internal mailing lists, and the
sessions lasted between 30 minutes and an hour. The first half of
each session consisted of a demonstration of a Symphony prototype
based on a mock dataset. In the second half of each session, we
asked participants to reflect on and describe their own work and
asked them about what additional features would be necessary to
integrate Symphony into their workflows.

6.1 Expanding Symphony’s Technical
Capabilities

From these participatory design sessions, we extracted a set of ad-

ditional needs and wants for Symphony. Rather than the high-level

goals presented in Section 4, the findings from the participatory

design sessions are more technical and tied to the implementation

of Symphony.

While displaying images directly in computational notebook
components was greatly appreciated by the participants working in
computer vision, the teams working in different domains expressed
interest in previewing and visualizing other data types. To demon-
strate Symphony’s ability to support other unstructured data types,
we made the display of data sample modular and added audio data
as an additional supported data type. To visualize other types of
data, a developer just has to implement a rendering function for
the new data which all components can use.

Some teams work with large models trained on big data, which
originally exceeded Symphony’s ability to scale and led to long
load times. In response, we implemented pagination for all the
components that display raw data. Depending on the data type, the
number of samples per page can be adjusted, allowing Symphony
to scale to millions of data samples. For even larger datasets, where
a ML practitioner wants to load and visualize hundreds of millions
of data points, the browser memory becomes a limiting factor for
holding the backing metadata table. For these truly large datasets,
we suggest users select representative subsets for detailed analysis;
however, scaling beyond millions of data instances is described in
Figure 8.

Interactive exploration is a powerful analysis technique when de-
veloping ML systems. However, for ML projects that contain many
datasets, compounded when data or models are rapidly chang-
ing, participants expressed interest in automatically generating
shareable dashboards and reports to support streaming data and
automatic model retraining. Apart from providing Symphony as
an authoring tool in computational notebooks, ML practitioners
can also write Python scripts that consume ML data and model
outputs, assemble a selection of components, and create and export
a standalone Symphony web UL

Symphony

A Markdown B ' List C Summary
Data Collecti:
ata Collection # of Instances: 59999
Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed o
do eiusmod tempor incididunt ut - p— dataset distribution
Tabore ot dolore magna aliqua B
]
Labelling Process H
Lorem ipsum dolor st amet, - - - soma .
consectetur adipiscing elit, sed. \ 0 20,000 40,000
Q) »J)
G ' Familiarity H ' Projection I ' Confusion Matrix

Least Familiar Instances

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

D ' 3D Path F ' Duplicates

Candidate Group 1

L
e Jo es 1o |

Candidate Group 2
el ;-O-J F E j-:.A
J a ——

K FairVis

J | Hierarchical Conf. Matrix

— False Positive Rate @ Accuracy @

}

. & 65.86% accuracy
Y B v
. . . [\

False Positive Rate

PEEE .« - =

column: class

Figure 6: The Symphony components we implemented as a result of the participatory design sessions. (A) Markdown text for
data and model details. (B) A paginated list of instances. (C) Distribution charts for metadata columns. (D) 3D path visualiza-
tions for sensor and inertial measurement unit (IMU) data. (E) Map visualizations for geographic data. (F) Potential duplicate
instances. (G) Familiar and unfamiliar instances in a dataset. (H) 2D projection for model embeddings. (I) Binary confusion
matrix. (J) Confusion matrix for hierarchical classification models. (K) Fairness analyses of intersectional subgroups.

6.2 Implemented Symphony Components for
Data and Model Analysis

Informed by the feedback and needs expressed in the participatory
design sessions, we implemented an initial set of 11 components
shown in Figure 6. These initial components cover various data and
model analysis tasks, from finding potential duplicates in a dataset
to auditing models for biases. We created all components using the
component cookiecutter template described in Figure 5.1.

The first set of components created cover overview descriptions
and summaries of an ML dataset. The markdown component (A) lets
Symphony replicate existing documentation methods like Datasheets
and Model Cards by writing rich text content. Users can follow ex-
isting guidelines to document essential information about a dataset
or model often overlooked or not described. The list component (B)
shows a paginated list of data instances, with support for a variety
of data types like images and audio. Multiple ML practitioners re-
quested this feature, since they currently use file explorers outside
of a notebook or one-off functions to look at individual instances.
Distribution charts and counts in the summary component (C) pro-
vide a high-level overview of data and can help detect potential
biases or skews in a dataset. Lastly, we developed two additional
components, a 3D path component (D) and map component (E), for
exploring specific data types like health sensor data and geographic
distributions.

We also implemented a set of components for more complex
analysis of unstructured datasets that were important to multiple
teams. We first compute a model embedding from a deep learning
model on the provided data instances, from which different metrics
are calculated. For the first of these components we use a nearest
neighbors algorithm based on cosine distance in embedding space
to find potential groups of duplicate instances (F), which could
impact training performance or the validity of test set accuracy. In
the next component, we fit a Mixture of Gaussians model on the
embeddings to calculate a familiarity score for each data point. We
find the most and least familiar instances in a dataset (G) by sorting

by familiarity score. Instances with low familiarity scores can be
outliers or mislabeled instances, while high familiarity instances
can show over-represented types of data. Finally, there is a 2D
projection embedding (H) that shows a dimensionality reduced
representation of the embeddings. The embedding can be used to
find various interesting data and model patterns and is especially
useful when used to explore insights found in other components.

The last set of components we implemented focus on analyzing
and debugging ML models. The classic confusion matrix component
(I) is important for initial debugging of classification models. Other
classification tasks that use data with hierarchical or multi-label
data can be explored using a hierarchical confusion matrix com-
ponent (J). We primarily implemented this component for a team
in the participatory design sessions that was working on hierar-
chical classification models. Lastly, we built a set of visualizations
for analyzing model performance across intersectional subgroups
(G) based on a system by Cabrera et al. [9]. The visualization can
help users audit their models for biases, something which multiple
product teams were interested in.

We used three different methods for implementing the above
Symphony components. Symphony components are Svelte and
JavaScript (JS) files, so authors can create new visualizations with
their preferred front-end libraries. For components without exist-
ing libraries, we used JavaScript in combination with visualization
packages such as Vega and D3. Symphony can also use off-the-shelf
JS libraries, for example, we used REGL Scatterplot [42], a WebGL
library, to create the projection component. Lastly, since Symphony
components are made with Svelte, we can also directly use Svelte
components, which is what we did with the Hierarchical Confusion
Matrix. These different strategies for creating components provide
the flexibility to implement custom visualizations while also allow-
ing developers to use off-the-shelf libraries and visualizations.

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

7 CASE STUDIES ON DEPLOYED ML SYSTEMS

Lastly, we evaluated Symphony with ML practitioners and stake-
holders working on real-world ML products. We worked with three
ML teams at Apple, drawn from the participatory design sessions,
to integrate Symphony with their data and ML pipelines. The teams
focus on different machine learning tasks, namely dataset creation
and labeling, accessibility research, and ML education. To under-
stand the affordances and limitations of Symphony, we conducted
think-aloud studies lasting 60 minutes where a member of each
team used Symphony to explore a Jupyter notebook and create a
web-based dashboard for their data and model. While field studies
like ours excel at capturing how participants actually work, this
data has to be collected opportunistically. We believe these case
studies capture the target audience of Symphony, cross-functional
teams working on modern ML models trained on unstructured data,
but may have some insights specific to organizational workflows.

Before the study, we sent a member of each team, the main par-
ticipant, a Jupyter notebook that imported their data and displayed
a set of Symphony components applicable to their domain and task.
The study was split into three main sections. For the first third of
the study, we asked the team to think aloud while the main partici-
pant used the notebook and Symphony components to explore the
data and model freely. In the second part of the study, we asked
the main participant to export the Symphony components (using a
command in the notebook) to a standalone dashboard and continue
exploring in the exported web UL For the final part of the study,
we asked the team for feedback on Symphony and discussed what
types of use cases or limitations they found.

7.1 Case Study I: Validating and Sharing Data
Patterns on a Dataset Creation Team

For the first case study, we worked with a team that assembles and
labels large machine learning datasets. Their datasets are composed
of labeled images and videos which they publish to an internal
data repository. The team was interested in using Symphony in two
ways, first, using it during dataset creation to detect errors in the
data and labels, and second, as a reporting tool to give consumers
of the dataset details about the data. Given these requirements, we
loaded Symphony with the list (Figure 6 (B)), summary (Figure 6
(C)), duplicates (Figure 6 (F)), familiarity (Figure 6 (G)), projection
(Figure 6 (H)), and map (Figure 6 (E)) components.

The main participant started in the notebook and used multiple
components and interaction tools in concert to spot unexpected
patterns in their data. They made extensive use of Symphony’s
toolbar to combine filters and select subsets of data in which they
were interested. When using the notebook, they commented that
“there are a lot of neat things here, first, the filter carried over, and it
is so cool to see the data samples and metadata within the notebook.”
The synchronized, reactive state let them validate insights from the
filtered summary charts with the actual raw instance previews in
the list view. Next, the main participant moved on to the duplicates
and familiarity components, where they found a couple of labeling
errors that they suspected existed in their dataset but had not been
able to validate previously. After transitioning to the standalone
dashboard, the first component they looked at was the projection
visualization. They used the projection to find a closely clustered

Béuerle and Cabrera, et al.

group of instances where a few highlighted points that the model
had misclassified. In the standalone dashboard, they also dubbed the
map visualization “very useful” , especially when sharing reports
of their data collection efforts with managers or policymakers.

Overall, the team found “a lot of value here” when using Sym-
phony. They mentioned that the workflow they would most pre-
fer would be automatically generating shareable reports for every
dataset they published: “programmatic generation and live visu-
alizations are awesome, being able to pop these charts into all our
READMESs would be amazing.” They saw the standalone dashboard
that they created with Symphony as a “great starting point” for
analyzing their datasets, and that they could see people use the
notebooks for more detailed analysis: “if people want to drill down
more, and get exact specific access, summon the notebook.” Being
able to create different interfaces with subsets of visualization com-
ponents was important for them as well, as different audiences
have different needs and they “do not want customers to do the data
cleanup” for them.

The team also identified usability issues and limitations in Sym-
phony. When initially using the projection component, the main
participant was not sure what it showed and thought that “this
component would need some introduction, as it has complex controls.”
They also requested additional components, such as heatmaps and
other 2D graphs, to do a more detailed analysis of distributions.
Lastly, the main limitation for directly using Symphony was not
being able to attach the raw data files to a Symphony interface as
their data samples are often not hosted and too large to duplicate.

7.2 Case Study II: Debugging Training Data on
an Accessibility Team

In the second case study, we worked with a team that uses ML
to make software applications more accessible. They have a large
dataset of icon screenshots for which we assembled a similar set of
components to the dataset creation team. We included the summary
(Figure 6 (F)), duplicates (Figure 6 (A)), familiarity (Figure 6 (B), and
projection (Figure 6 (H)) components .

When exploring the notebook, the participant found the du-
plicates, familiarity, and scatterplot components to be the most
interesting. Since they use an automated approach to collect their
data, the participant assumed that there were likely duplicates in
the dataset but had protocols to ensure they would not be across
the training and testing set. Using the duplicates component, they
confirmed that a significant number of icons were duplicates, but
when they used the grouping interaction to split the data by test-
ing and training they found that a significant number of instances
were duplicated across the two datasets. The combination of the
duplicates visualization and grouping interaction tool helped them
discover that they “were cheating learning on samples we test for.”
The participant identified the problematic duplicates and selected
them in the notebook to remove from the test set with a Python
command later. Next, the participant explored the familiarity com-
ponent and found a large number of similar grey icons, based on
which they wondered if “the model might overfit on these samples.”
Finally, using the projection visualization, they found a dispersed
cluster of instances with different labels. When they selected the
group, they found that the instances were all PNG images in the

]

Symphony

test set, while the training set only contained JPEG images. The par-
ticipant then mentioned they “want to test their model specifically
on PNG images to assess how the model generalized.”

Overall, the participant mentioned that they would “want to
try and use this to share insights within the team.” Additionally,
they found the notebook-based visualizations personally useful
to “look into the data,” which they had previously done manually
using a file explorer outside of the notebook. They mentioned that
they would likely use a computational notebook to explore data,
and only use the standalone dashboards to share insights or when
they wanted more visualization space. The main feature the team
wanted was to combine data and model findings to understand the
impact of data changes: “it would be super helpful to also add models
and combine model analysis with existing components.” While this
analysis is possible with existing model analysis components, future
components could specifically combine data and model information.

7.3 Case Study III: Promoting Data Exploration
for ML Novices on an Education Team

For the final case study, we collaborated with a team focused on ML
education. They teach courses about ML principles and techniques
to engineers, and also teach their audience about data and model
analysis tools. They sent us a list of datasets they commonly explore
with students from which we selected two representative datasets,
one audio dataset for data analysis and one image dataset for model
analysis. For the audio dataset we used the same components as in
the previous evaluation. To support model analysis for the image
dataset, we used the summary (Figure 6 (F)), hierarchical confusion
matrix (Figure 6 (D)), FairVis (Figure 6 (K)), and projection (Figure 6
(H)) components.

The team was interested in how they could use separate com-
ponents in concert. They used the cross-filtering and grouping
heavily to combine, for example, the projection visualization with
the summary component to spot misclassified samples. They also
used the confusion matrix visualization in combination with our
filtering tool. For example, they filtered out the correctly classified
data samples from the metadata table to highlight misclassifica-
tions and described the resulting confusion matrix as “a fantastic
graphic.” They were also intrigued by being able to display a list
of data samples in notebooks or a standalone dashboard, as they
“constantly tell [their] students to look at a lot of examples” but are
currently limited to seeing one or two instance at a time and “just
graph things using matplotlib or pillow.”

Overall, the team found Symphony to be a valuable tool for ML
tasks and thought it could play a part in one of their lessons, as
“promoting looking at data is extremely important.” They remarked
that “in Python, its very easy to ignore the data, anything you can
do to bring the data to the forefront is great.” Thus, they wanted
to use Symphony during their courses in multiple ways, namely
using the “notebook for generating interfaces, then exporting them
to teach a group such that they can open the website and everyone
can explore on their own or follow my instructions.” This way, they
hoped that “[students] can play with it and experiment talk about
how to communicate results for ML models.” They also particularly
liked the option to assemble visualizations, for example when their

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

students learn how to “communicate findings to executives” and
“graphing the relevant, and hiding the irrelevant.”

As for limitations, they wanted to be able to unlink the state
of different components to experiment with them independently.
They also mentioned that they would like to load more data types
than just the currently implemented audio, images, and tabular data,
namely text data. While this is not possible right now, Symphony
could be extended to more data types by augmenting the data
sample adapter we provide.

8 LIMITATIONS AND FUTURE WORK

In both the pilot studies and case studies, we found ways in which
Symphony could be further improved.

Authoring components. Symphony components are written using
JavaScript code and web-based visualization libraries. Programming
these visualizations requires expertise in web development and
visualization, which limits who can create new components. Future
work could explore ways to lower the barrier to authoring new
visualization components. Potential strategies to make component
creation more accessible include using grammars for interactive
graphics, such as Vega [52], or Ul-based visualization builders like
Tableau [43]. Additional research would be needed to make these
tools more expressive for unstructured data and ML models.

Scaling past millions of data points. Symphony currently loads
the backing metadata table used for Symphony into web browser
memory. This scales to tens of millions of data points, which, while
sufficient for many modern ML tasks, does not cover all domains. In
our design sessions, we spoke to teams with terabyte-scale metadata
tables that do not fit in browser memory. Future work could explore
ways to support this scale while still providing direct interactivity
with the underlying data and models. Using an external API or
backend for data processing combined with more efficient data
queries could support massive data but would limit where the web-
based UI could be used.

Beyond conventional data science platforms. In this work, we im-
plemented Symphony wrappers for computational notebooks, pro-
gramming environments, and web-based dashboards. While these
platforms cover a significant portion of where ML work happens,
future work could explore how Symphony could be incorporated
into other platforms, especially those which are currently isolated
from data science work. For example, Symphony interfaces could
be included in messaging services, documents, presentations, or
issue trackers to further bring the benefits of Symphony to more
people. New design studies could be conducted to understand how
users in common communication platforms like instant messaging
would benefit from and use Symphony components.

Guided usage of Symphony. ML practitioners can use Symphony
for a wide array of ML analyses, from dataset debugging to auditing
models for bias. This gamut of uses stands in contrast to more
prescriptive approaches like Datsheets [17], Model Cards [46], and
checklists [44] which define an ordered list of what an ML interface
should show. While ML practitioners can use Symphony for more
types of analyses, it does not provide any guidance to users about
which components might be the most adequate or useful for a given

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

task. Future work could look at combining Symphonys open-ended,
exploratory approach with more prescriptive guidance.

Scope of case study findings. Lastly, our case studies were con-
ducted with ML practitioners at a single institution that works
on large ML models trained on unstructured data, often using
notebooks and visualization dashboards. While we believe these
tools and ML development practices exist widely in industry and
academia, we recognize some of our findings may not generalize
to other organizations or types of users such as machine learning
enthusiasts, hobbyists, or small teams. Further studies could explore
Symphony’s affordances and drawbacks in these distinct settings.

9 DISCUSSION

Symphony provides a common substrate for ML interfaces that
enables both exploratory analysis and sharable ML interfaces. By
meeting different users where they work, Symphony empowers
each member of an ML team to have direct access and knowledge
of the data and models powering an Al product.

While the case studies described scenarios where ML practition-
ers work in programming environments and then transition to
web-based Uls, we also observed in our studies that ML practition-
ers can benefit from going the opposite direction: transitioning from
a web-based UI back to a programming environment. When a user
finds an interesting insight in a standalone Symphony dashboard,
they can copy their findings to the programming environments
along with state variables like filters and groups. Existing analysis
tooling often suffers from an “expressiveness cliff”, where only a
fixed set of visualizations and data manipulations is available. Sym-
phony allows users to return to programming environments where
they have more flexible analysis tools.

ML practitioners’ desire to use Symphony for exploration could
also encourage them to share their insights more frequently. If
ML practitioners are using a set of Symphony components for ex-
ploratory analysis in a notebook, no additional work is needed
for them to export it as a standalone, shareable UL Participants
mentioned the ability to programmatically combine components
as a major benefit, allowing them to go from exploration to an in-
teractive, web-based UI without using a different tool. Additionally,
Symphony interfaces can be redeployed continuously whenever the
data and model are updated, supporting ML tasks with streaming
data or automatic model retraining.

By integrating with existing data science platforms, Symphony
could also encourage broader use of task-specific ML visualizations.
ML visualization systems are often implemented as one-off web
dashboards [1, 9, 10, 22, 39, 64] that require users to wrangle and
export their data into systems separate from where they do ML
development. Symphony includes task-specific visualization com-
ponents directly in data since platforms like Jupyter notebooks,
and the components can consume data from standard data APIs
like Pandas Data Frames. In turn, implementing ML visualizations
as independent components in a framework like Symphony could
increase their use and longevity.

Beyond helping individuals understand ML systems, Symphony
is intended to foster a shared organizational understanding [69]
between stakeholders on an ML team. Symphony interfaces act

Béuerle and Cabrera, et al.

as boundary objects for large, cross-functional ML teams. Bound-
ary objects are artifacts that are “both plastic enough to adapt to
local needs and the constraints of the several parties employing them,
yet robust enough to maintain a common identity across sites” [56].
Symphony can serve as a boundary object for ML teams, providing
interfaces that adapt to the different needs of stakeholders. At the
same time, “The creation and management of boundary objects is
a key process in developing and maintaining coherence across in-
tersecting social worlds” [56]. Symphony aids in this creation and
management process, bridging the gap between the intersecting
worlds of different ML stakeholders such as engineers, designers,
and product managers.

10 CONCLUSION

In this work, we designed and implemented Symphony, a frame-
work for composing interactive ML interfaces with data-driven,
task-specific visualization components. Symphony’s visualizations
helped ML teams find important issues such as data duplicates and
model blind spots. Additionally, We found that by providing ML
interfaces in the data science platforms where ML practitioners
work, Symphony can encourage ML practitioners to want to use
and share insights. With data-driven components that diverse stake-
holders across an ML team can use, Symphony fosters a culture of
shared ML understanding and encourages the creation of accurate,
responsible, and robust Al products.

ACKNOWLEDGMENTS

We thank our colleagues at Apple for their time and effort integrat-
ing our research with their work. We especially thank Kayur Patel
for his guidance and Mary Beth Kery for her generosity reviewing
early drafts of this work.

REFERENCES

[1] Yongsu Ahn and Yu-Ru Lin. 2019. Fairsight: Visual analytics for fairness in
decision making. IEEE Transactions on Visualization and Computer Graphics 26, 1
(2019), 1086-1095.

[2] Robert Amar, James Eagan, and John Stasko. 2005. Low-level components of
analytic activity in information visualization. In IEEE Symposium on Information
Visualization, INFO VIS. IEEE, 111-117.

[3] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. Modeltracker: Redesigning performance analysis
tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. 337-346.

[4] Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep
Mehta, Aleksandra Mojsilovi¢, Ravi Nair, K Natesan Ramamurthy, Alexandra
Olteanu, David Piorkowski, et al. 2019. FactSheets: Increasing trust in Al services
through supplier’s declarations of conformity. IBM Journal of Research and
Development 63, 4/5 (2019), 6-1.

[5] Andrea Batch, Niklas Elmqvist, and Senior Member. 2018. The interactive visual-
ization gap in initial exploratory data analysis. IEEE Transactions on Visualization
and Computer Graphics 24 (2018), 278-287.

[6] Alex Biuerle, Heiko Neumann, and Timo Ropinski. 2020. Classifier-guided visual
correction of noisy labels for image classification tasks. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 195-205.

[7] Emily M Bender and Batya Friedman. 2018. Data statements for natural lan-
guage processing: Toward mitigating system bias and enabling better science.
Transactions of the Association for Computational Linguistics 6 (2018), 587-604.

[8] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-

racy disparities in commercial gender classification. In Conference on Fairness,

Accountability and Transparency. PMLR, 77-91.

Angel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie

Morgenstern, and Duen Horng Chau. 2019. FairVis: Visual analytics for discov-

ering intersectional bias in machine learning. In 2019 IEEE Conference on Visual

Analytics Science and Technology. IEEE, 46-56.

=

Symphony

[10] Dylan Cashman, Adam Perer, Remco Chang, and Hendrik Strobelt. 2019. Ablate,
variate, and contemplate: Visual analytics for discovering neural architectures.
IEEE Transactions on Visualization and Computer Graphics 26, 1 (2019), 863-873.

[11] Changjian Chen, Jun Yuan, Yafeng Lu, Yang Liu, Hang Su, Songtao Yuan, and
Shixia Liu. 2020. Oodanalyzer: Interactive analysis of out-of-distribution samples.
IEEE Transactions on Visualization and Computer Graphics 27,7 (2020), 3335-3349.

[12] Nan-Chen Chen, Jina Suh, Johan Verwey, Gonzalo Ramos, Steven Drucker, and

Patrice Simard. 2018. AnchorViz: Facilitating classifier error discovery through in-

teractive semantic data exploration. In 23rd International Conference on Intelligent

User Interfaces. 269-280.

European Commission. 2019. Ethics guidelines for trustworthy AL https://digital-

strategy.ec.europa.eu/en/library/ethics- guidelines- trustworthy-ai

[14] Robert A DeLine. 2021. Glinda: Supporting data science with live programming,

GUIs and a Domain-specific Language. In Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems. 1-11.

Luciano Floridi. 2019. Establishing the rules for building trustworthy AL Nature

Machine Intelligence 1, 6 (2019), 261-262.

[16] Jules Francoise, Baptiste Caramiaux, and Téo Sanchez. 2021. Marcelle: Composing

interactive machine learning workflows and interfaces. In The 34th Annual ACM

Symposium on User Interface Software and Technology. 39-53.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,

Hanna Wallach, Hal Daumé i, and Kate Crawford. 2021. Datasheets for datasets.

Commun. ACM 64, 12 (2021), 86-92.

Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.

2019. Managing messes in computational notebooks. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems. 1-12.

[19] Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor Darrell, and Anna
Rohrbach. 2018. Women also snowboard: Overcoming bias in captioning models.
In Proceedings of the European Conference on Computer Vision. 771-787.

[20] Andreas Hinterreiter, Peter Ruch, Holger Stitz, Martin Ennemoser, Jurgen
Bernard, Hendrik Strobelt, and Marc Streit. 2020. Confusionflow: A model-
agnostic visualization for temporal analysis of classifier confusion. IEEE Transac-
tions on Visualization and Computer Graphics (2020).

[21] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. 2018. Visual

analytics in deep learning: An interrogative survey for the next frontiers. IEEE

Transactions on Visualization and Computer Graphics (2018). https://doi.org/10.

1109/TVCG.2018.2843369

Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Polo Chau. 2019.

Summit: Scaling deep learning interpretability by visualizing activation and

attribution summarizations. IEEE Transactions on Visualization and Computer

Graphics 26, 1 (2019), 1096-1106.

Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia Chmielin-

ski. 2018. The dataset nutrition label: A framework to drive higher data quality

standards. arXiv preprint arXiv:1805.03677 (2018).

[24] Holoviz. 2021. Panel. https://panel.holoviz.org/

[25] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science

& Engineering 9, 3 (2007), 90-95. https://doi.org/10.1109/MCSE.2007.55

] DataBricks Inc. 2021. DataBricks. https://databricks.com/

] Google Inc. 2021. Facets. https://pair-code.github.io/facets/

] Google Inc. 2021. Know Your Data. https://knowyourdata.withgoogle.com/

]

1

(13

[15

(17

(18

[22

[23

Observable Inc. 2021. Observable. https://observablehq.com/

Plotly Technologies Inc. 2015. Collaborative data science. Montreal, QC. https:

//plot.ly

[31] Streamlit Inc. 2021. Streamlit. https://streamlit.io/

] Jupyter. 2021. IPyWidgets. https://ipywidgets.readthedocs.io/en/stable/

[33] Minsuk Kahng, Pierre Y. Andrews, Aditya Kalro, and Duen Horng Polo Chau.
2018. ActiVis: Visual exploration of industry-scale deep neural network models.
IEEE Transactions on Visualization and Computer Graphics 24 (2018), 88-97. Issue
1. https://doi.org/10.1109/TVCG.2017.2744718

[34] Minsuk Kahng, Dezhi Fang, and Duen Horng Chau. 2016. Visual exploration of

machine learning results using data cube analysis. HILDA 2016 - Proceedings of

the Workshop on Human-In-the-Loop Data Analytics (2016). https://doi.org/10.

1145/2939502.2939503

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A

Myers. 2018. The story in the notebook: Exploratory data science using a literate

programming tool. In Proceedings of the 2018 CHI Conference on Human Factors

in Computing Systems. 1-11.

[36] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid moves between code and graph-
ical work in computational notebooks. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. 140-151.

[37] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,

Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason

Grout, Sylvain Corlay, Paul Ivanov, Damian Avila, Safia Abdalla, and Carol

Willing. 2016. Jupyter Notebooks — a publishing format for reproducible com-

putational workflows. In Positioning and Power in Academic Publishing: Players,

Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 — 90.

@
S

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[38] Laura Koesten, Emilia Kacprzak, Jeni Tennison, and Elena Simperl. 2019. Col-

laborative practices with structured data: Do tools support what users need?. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1-14.

Josua Krause, Adam Perer, and Kenney Ng. 2016. Interacting with predictions:
Visual inspection of black-box machine learning models. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. 5686—-5697.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and
Aditya G. Parameswaran. 2022. Lux: Always-on visualization recommendations
for exploratory data science. Proceedings of the VLDB Endowment 15, 3 (2022),
727-738.

Fritz Lekschas. 2021. Regl Scatterplot. https://github.com/flekschas/regl-
scatterplot

Tableau Software LLC. 2021. Tableau. https://www.tableau.com/

Michael A Madaio, Luke Stark, Jennifer Wortman Vaughan, and Hanna Wallach.
2020. Co-designing checklists to understand organizational challenges and
opportunities around fairness in ai. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1-14.

Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51-56.
Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model cards for model reporting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency. 220-229.

Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré.
2020. Hidden stratification causes clinically meaningful failures in machine
learning for medical imaging. In Proceedings of the ACM Conference on Health,
Inference, and Learning. 151-159.

Kayur Patel, Naomi Bancroft, Steven M Drucker, James Fogarty, Andrew J Ko,
and James Landay. 2010. Gestalt: Integrated support for implementation and
analysis in machine learning. In Proceedings of the 23nd annual ACM Symposium
on User Interface Software and Technology. 37-46.

Plotly. 2021. Dash. https://plotly.com/dash/

Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D. Williams.
2017. Squares: Supporting interactive performance analysis for multiclass classi-
fiers. IEEE Transactions on Visualization and Computer Graphics 23 (2017), 61-70.
Issue 1. https://doi.org/10.1109/TVCG.2016.2598828

Dominik Sacha, Michael Sedlmair, Leishi Zhang, John A Lee, Jaakko Peltonen,
Daniel Weiskopf, Stephen C North, and Daniel A Keim. 2017. What you see is what
you can change: Human-centered machine learning by interactive visualization.
Neurocomputing 268 (2017), 164-175.

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2015. Reac-
tive vega: A streaming dataflow architecture for declarative interactive visual-
ization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2015),
659-668.

Ben Shneiderman. 2020. Bridging the gap between ethics and practice: Guidelines
for reliable, safe, and trustworthy Human-Centered Al systems. ACM Transactions
on Interactive Intelligent Systems 10, 4 (2020), 1-31.

Jake Silberg and James Manyika. 2019. Notes from the Al frontier: Tackling bias
in Al (and in humans). McKinsey Global Institute (Fune 2019) (2019).

[55] Jacob Snow. 2018. Amazon’s face recognition falsely matched 28 members of

congress with mugshots. American Civil Liberties Union 28 (2018).

Susan Leigh Star and James R Griesemer. 1989. Institutional ecology,translations’
and boundary objects: Amateurs and professionals in Berkeley’s Museum of
Vertebrate Zoology, 1907-39. Social Studies of Science 19, 3 (1989), 387-420.
Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter
Pfister, and Alexander M. Rush. 2019. Seq2seq-Vis: A visual debugging tool for
sequence-to-sequence models. In IEEE Transactions on Visualization and Computer
Graphics, Vol. 25. 353-363. https://doi.org/10.1109/TVCG.2018.2865044

[58] Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik Moritz, Kanit Wong-

suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott
Sievert. 2018. Altair: Interactive statistical visualizations for python. Journal of
Open Source Software 3 (2018), 1057. Issue 32. https://doi.org/10.21105/j0ss.01057
Alfredo Vellido. 2020. The importance of interpretability and visualization in
machine learning for applications in medicine and health care. Neural Computing
and Applications 32, 24 (2020), 18069-18083.

Voila. 2021. Voila. https://github.com/voila-dashboards/voila

Angelina Wang, Arvind Narayanan, and Olga Russakovsky. 2020. REVISE: A
tool for measuring and mitigating bias in visual datasets. In European Conference
on Computer Vision. Springer, 733-751.

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda
Viegas, and Jimbo Wilson. 2020. The what-if tool: Interactive probing of machine
learning models. IEEE Transactions on Visualization and Computer Graphics 26
(2020), 56-65. Issue 1. https://doi.org/10.1109/TVCG.2019.2934619

CHI

(63]

(64

’22, April 29-May 5, 2022, New Orleans, LA, USA

Benjamin Wilson, Judy Hoffman, and Jamie Morgenstern. 2019. Predictive in-
equity in object detection. arXiv preprint arXiv:1902.11097 (2019).

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld. 2019.
Errudite: Scalable, reproducible, and testable error analysis. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. 747-763.
Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
code and interactive visualization in computational notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
152-165.

Shouxing Xiang, Xi Ye, Jiazhi Xia, Jing Wu, Yang Chen, and Shixia Liu. 2019.
Interactive correction of mislabeled training data. In 2019 IEEE Conference on

Béuerle and Cabrera, et al.

Visual Analytics Science and Technology. IEEE, 57-68.

[67] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie A Jacko. 2007. Toward a deeper
understanding of the role of interaction in information visualization. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (2007), 1224-1231.

[68] JM Zhang, M Harman, L Ma, and Y Liu. 2020. Machine learning testing: Survey,
landscapes and horizons. IEEE Transactions on Software Engineering (2020), 1.
https://doi.org/10.1109/TSE.2019.2962027

[69] Angel Cabrera and Elizabeth F. Cabrera. 2002. Knowledge-sharing dilemmas. Or-
ganization Studies 23, 687-710. Issue 5. https://doi.org/10.1177/0170840602235001

VISUALIZATION-BASED
NEURAL NETWORK
INTROSPECTION

ALEX BAUERLE

20.07.2022

	Titel
	Abstract
	Contents
	 Thesis
	1 Introduction
	1.1 Introspection Technniques
	1.2 ML Visualization Interfaces
	1.2.1 Quality Assurance
	1.2.2 Communication
	1.2.3 Education
	1.2.4 Unification

	1.3 Structure of this Work
	1.4 Publications included in this Work
	1.5 Other Publications

	2 Contributions
	2.1 Classifier-Guided Visual Error Correction
	2.2 Net2Vis
	2.3 exploRNN
	2.4 Symphony

	3 Conclusion
	3.1 Future Work
	3.2 Summary of Contributions

	 Bibliography

	 Publications

