Usage ===== Before using luna, you need to install it from pip as follows: ``pip install luna_fviz``. The following provides an example of how Luna can be used for feature visualization:: from luna.pretrained_models import models from luna.featurevis import featurevis, images, image_reader from luna.featurevis.transformations import * import matplotlib.pyplot as plt model = models.model_inceptionv3() model.trainable = False image = images.initialize_image(324, 324) iterations = 512 learning_rate = 0.7 optimizer = tf.keras.optimizers.Adam(epsilon=1e-08, learning_rate=0.05) # Define a function containing all the transformations that you would like to apply # At the moment scaling and blur yield the best results. # Nonetheless, all other lucid transformations are implemented in featurevis.transformations and can be added too. def my_trans(img): """Function containing all the desired transformations """ img = scale_values(img) img = blur(img) return img opt_param = featurevis.OptimizationParameters(iterations, learning_rate, optimizer=optimizer) activation, image= featurevis.visualize_filter(image, model, "mixed5", 30, opt_param, transformation=my_trans) plt.imshow(image) plt.savefig("image.svg") plt.clf() images.save_image(image, name="test") image_reader.save_npy_as_png("test.npy", ".")